Discrete excitable media on graphs

Hanbaek Lyu

Joint work with David Sivakoff and Janko Gravner
The Ohio State University

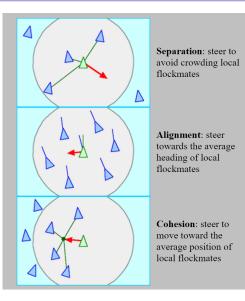
www.hanbaeklyu.com

OSU Math Graduate Students Seminar

Oct. 25, 2016

Introduction: Boids and Life, and Excitable media

Boids by Craig Reynolds (1986)



- A multi-agent model for coordinated animal motion
- Popularized the idea of bottom-up behavior

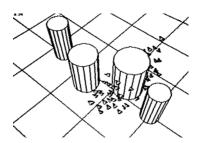
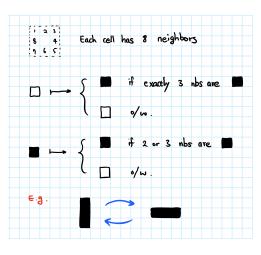


Image by Craig Reynolds

The Game of Life by John H. Conway (1970)



- A simplification of Von Neumann's 29-state self-replicating cellular automaton (1966)
- Capable of universal computing, e.g., twin primes

Excitable Media

 An excitable medium is a network of dynamic units where each unit fluctuates its neighbors' internal dynamics on a particular event

Excitable Media

- An excitable medium is a network of dynamic units where each unit fluctuates its neighbors' internal dynamics on a particular event
- Waves of excitations (fluctuations) propagate across network, often leading to surprising self-organization in the system.

Excitable Media

- An excitable medium is a network of dynamic units where each unit fluctuates its neighbors' internal dynamics on a particular event
- Waves of excitations (fluctuations) propagate across network, often leading to surprising self-organization in the system.
- Examples: nerve cells, muscle cells, chemical reaction, coupled oscillators, local clocks in distributed networks

Excitable Media

- An excitable medium is a network of dynamic units where each unit fluctuates its neighbors' internal dynamics on a particular event
- Waves of excitations (fluctuations) propagate across network, often leading to surprising self-organization in the system.
- Examples: nerve cells, muscle cells, chemical reaction, coupled oscillators, local clocks in distributed networks
- Commonly modeled by reaction-diffusion equations in continuous setting.

Excitable Media

- An excitable medium is a network of dynamic units where each unit fluctuates its neighbors' internal dynamics on a particular event
- Waves of excitations (fluctuations) propagate across network, often leading to surprising self-organization in the system.
- Examples: nerve cells, muscle cells, chemical reaction, coupled oscillators, local clocks in distributed networks
- Commonly modeled by reaction-diffusion equations in continuous setting.

Figure: (top) Cyclic AMP wave patterns in slime molds (by L. Yang) and (bottom) BZ oscillator (by Abteilung Biophysik Lab)

Overview

- 1. Definition of three discrete models for excitable media
- 2. κ -color models on \mathbb{Z}
- 3. 3-color models on arbitrary graphs
- 4. Tournament expansion: proof of key lemma
- 5. Open problem: FCA on higher dimensions

1. Three κ -color Excitable Media

κ -color Excitable Media

A discrete framework - Generalized Cellular Automaton

A discrete framework - Generalized Cellular Automaton

• A graph G = (V, E), state (coloring) space \mathbb{Z}_{κ} , κ -coloring $X_t:V\to\mathbb{Z}_{\kappa}$

A discrete framework - Generalized Cellular Automaton

- A graph G = (V, E), state (coloring) space \mathbb{Z}_{κ} , κ -coloring $X_t:V\to\mathbb{Z}_{\kappa}$
- Iteration of a locally defined deterministic transition map on an initial coloring X_0 gives a trajectory $(X_t)_{t>0}$

κ -color Excitable Media

A discrete framework - Generalized Cellular Automaton

- A graph G = (V, E), state (coloring) space \mathbb{Z}_{κ} , κ -coloring $X_t:V\to\mathbb{Z}_{\kappa}$
- Iteration of a locally defined deterministic transition map on an initial coloring X_0 gives a trajectory $(X_t)_{t>0}$

We study three discrete models for excitable media:

A discrete framework - Generalized Cellular Automaton

- A graph G = (V, E), state (coloring) space \mathbb{Z}_{κ} , κ -coloring $X_t:V\to\mathbb{Z}_{\kappa}$
- Iteration of a locally defined deterministic transition map on an initial coloring X_0 gives a trajectory $(X_t)_{t>0}$

We study three discrete models for excitable media:

1. Greenberg-Hastings model (GHM) - neural networks

A discrete framework - Generalized Cellular Automaton

- A graph G = (V, E), state (coloring) space \mathbb{Z}_{κ} , κ -coloring $X_t:V\to\mathbb{Z}_{\kappa}$
- Iteration of a locally defined deterministic transition map on an initial coloring X_0 gives a trajectory $(X_t)_{t>0}$

We study three discrete models for excitable media:

- 1. Greenberg-Hastings model (GHM) neural networks
- 2. Cyclic Cellular Automaton (CCA) chemical reaction

A discrete framework - Generalized Cellular Automaton

- A graph G = (V, E), state (coloring) space \mathbb{Z}_{κ} , κ -coloring $X_t:V\to\mathbb{Z}_{u_0}$
- Iteration of a locally defined deterministic transition map on an initial coloring X_0 gives a trajectory $(X_t)_{t>0}$

We study three discrete models for excitable media:

- 1. Greenberg-Hastings model (GHM) neural networks
- 2. Cyclic Cellular Automaton (CCA) chemical reaction
- 3. Firefly Cellular Automaton (FCA) pulse-coupled oscillators

Greenberg-Hastings Model (GHM)

• Proposed by Greenberg and Hastings in 1978¹

¹ James M Greenberg and SP Hastings. "Spatial patterns for discrete models of diffusion in excitable media". In: SIAM Journal on Applied Mathematics 34.3 (1978), pp. 515-523.

- Proposed by Greenberg and Hastings in 1978¹
- Transition map:

$$\begin{cases} 0 \mapsto 1 & \text{if } \exists \text{ a nb of color } 1 \\ 0 \mapsto 0 & \text{if } \nexists \text{ a nb of color } 1 \\ i \mapsto i+1 & \text{if } i \geq 1 \end{cases} \tag{1}$$

¹ James M Greenberg and SP Hastings. "Spatial patterns for discrete models of diffusion in excitable media". In: SIAM Journal on Applied Mathematics 34.3 (1978), pp. 515-523,

Greenberg-Hastings Model (GHM)

- Proposed by Greenberg and Hastings in 1978¹
- Transition map:

$$\begin{cases} 0 \mapsto 1 & \text{if } \exists \text{ a nb of color } 1 \\ 0 \mapsto 0 & \text{if } \nexists \text{ a nb of color } 1 \\ i \mapsto i+1 & \text{if } i \ge 1 \end{cases} \tag{1}$$

• Interpretation: 0 = rested, 1 = excited, rest=refractory

¹James M Greenberg and SP Hastings. "Spatial patterns for discrete models of diffusion in excitable media". In: SIAM Journal on Applied Mathematics 34.3 (1978), pp. 515-523,

Greenberg-Hastings Model (GHM)

- Proposed by Greenberg and Hastings in 1978¹
- Transition map:

$$\begin{cases} 0 \mapsto 1 & \text{if } \exists \text{ a nb of color } 1 \\ 0 \mapsto 0 & \text{if } \nexists \text{ a nb of color } 1 \\ i \mapsto i+1 & \text{if } i \ge 1 \end{cases} \tag{1}$$

- Interpretation: 0 = rested, 1 = excited, rest=refractory
- Example on P_3 with $\kappa = 4$:

¹James M Greenberg and SP Hastings. "Spatial patterns for discrete models of diffusion in excitable media". In: SIAM Journal on Applied Mathematics 34.3 (1978), pp. 515-523,

• Proposed by Bramson and Griffeath in 1989²

²Maury Bramson and David Griffeath. "Flux and fixation in cyclic particle systems". In: The Annals of Probability (1989), pp. 26-45.

Cyclic cellular automaton (CCA)

- Proposed by Bramson and Griffeath in 1989²
- Transition map:

$$\begin{cases} i \mapsto i+1 & \text{if } \exists \text{ a nb of color } i+1 \\ i \mapsto i & \text{otherwise} \end{cases}$$
 (2)

²Maury Bramson and David Griffeath. "Flux and fixation in cyclic particle systems". In: The Annals of Probability (1989), pp. 26-45.

- Proposed by Bramson and Griffeath in 1989²
- Transition map:

$$\begin{cases} i \mapsto i+1 & \text{if } \exists \text{ a nb of color } i+1 \\ i \mapsto i & \text{otherwise} \end{cases}$$
 (2)

• Interpretation: color $i + 1 \mod \kappa$ "eats" color i; rock-paper-scissor

²Maury Bramson and David Griffeath. "Flux and fixation in cyclic particle systems". In: The Annals of Probability (1989), pp. 26-45.

- Proposed by Bramson and Griffeath in 1989²
- Transition map:

$$\begin{cases} i \mapsto i+1 & \text{if } \exists \text{ a nb of color } i+1 \\ i \mapsto i & \text{otherwise} \end{cases}$$
 (2)

- Interpretation: color $i + 1 \mod \kappa$ "eats" color i; rock-paper-scissor
- Example on P_4 with $\kappa = 4$:

²Maury Bramson and David Griffeath. "Flux and fixation in cyclic particle systems". In: The Annals of Probability (1989), pp. 26-45.

• Proposed by L. in 2015³

³Hanbaek Lyu. "Synchronization of finite-state pulse-coupled oscillators". In: *Physica D: Nonlinear* Phenomena 303 (2015), pp. 28-38.

Tournament expansion

Firefly cellular automaton (FCA)

- Proposed by L. in 2015³
- Transition map:

$$\begin{cases} i \mapsto i+1 & \text{if } 0 \le i \le b(\kappa) \\ j \mapsto j & \text{if } j > b(\kappa) \text{ and } \exists \text{ a nb of color } b(\kappa) \\ j \mapsto j+1 & \text{otherwise} \end{cases}$$
 (3)

where
$$b(\kappa) = \lfloor \frac{\kappa - 1}{2} \rfloor$$

³Hanbaek Lyu. "Synchronization of finite-state pulse-coupled oscillators". In: Physica D: Nonlinear Phenomena 303 (2015), pp. 28-38.

- Proposed by L. in 2015³
- Transition map:

$$\begin{cases} i \mapsto i+1 & \text{if } 0 \leq i \leq b(\kappa) \\ j \mapsto j & \text{if } j > b(\kappa) \text{ and } \exists \text{ a nb of color } b(\kappa) \\ j \mapsto j+1 & \text{otherwise} \end{cases}$$
 (3)

where
$$b(\kappa) = \lfloor \frac{\kappa - 1}{2} \rfloor$$

• Interpretation: $b(\kappa) = \text{blinking color}, i > b(\kappa)$: post-blinking; blinking nodes inhibit post-blinking neighbors

³Hanbaek Lyu. "Synchronization of finite-state pulse-coupled oscillators". In: Physica D: Nonlinear Phenomena 303 (2015), pp. 28-38.

Firefly cellular automaton (FCA)

- Proposed by L. in 2015³
- Transition map:

$$\begin{cases} i \mapsto i+1 & \text{if } 0 \le i \le b(\kappa) \\ j \mapsto j & \text{if } j > b(\kappa) \text{ and } \exists \text{ a nb of color } b(\kappa) \\ j \mapsto j+1 & \text{otherwise} \end{cases}$$
 (3)

where
$$b(\kappa) = \lfloor \frac{\kappa - 1}{2} \rfloor$$

- Interpretation: $b(\kappa) = \text{blinking color}, i > b(\kappa)$: post-blinking; blinking nodes inhibit post-blinking neighbors
- Example on P_3 with $\kappa = 4$:

³Hanbaek Lyu. "Synchronization of finite-state pulse-coupled oscillators". In: Physica D: Nonlinear Phenomena 303 (2015), pp. 28-38.

• $x \in V$ excites at time t if its internal dynamic is fluctuated by some nb at time t (GHM: $0 \mapsto 1$, CCA: $i \mapsto i + 1 \mod \kappa$, and FCA: $i \mapsto i$ from time t to t + 1)

- $x \in V$ excites at time t if its internal dynamic is fluctuated by some nb at time t (GHM: $0 \mapsto 1$, CCA: $i \mapsto i + 1 \mod \kappa$, and FCA: $i \mapsto i$ from time t to t + 1)
- X_t fixates if every vertex excites only finitely many times and fluctuates otherwise

- $x \in V$ excites at time t if its internal dynamic is fluctuated by some nb at time t (GHM: $0 \mapsto 1$, CCA: $i \mapsto i + 1 \mod \kappa$, and FCA: $i \mapsto i$ from time t to t + 1)
- X_t fixates if every vertex excites only finitely many times and fluctuates otherwise
- X_t synchronizes if $X_t \equiv Const.$ for all large t, and clusters if it synchronizes "locally"

Introduction

- $x \in V$ excites at time t if its internal dynamic is fluctuated by some nb at time t (GHM: $0 \mapsto 1$, CCA: $i \mapsto i + 1 \mod \kappa$. and FCA: $i \mapsto i$ from time t to t+1)
- X_t fixates if every vertex excites only finitely many times and fluctuates otherwise
- X_t synchronizes if $X_t \equiv Const.$ for all large t, and clusters if it synchronizes "locally"
- For each $x \in V$, define its **activity** $\alpha(x)$ by

$$\alpha(x) = \limsup_{t \to \infty} \frac{\operatorname{ne}_t(x)}{t} \tag{4}$$

where $ne_t(x) = \sum_{s=0}^{t-1} \mathbf{1}_{\{x \text{ excites at time } s\}}$

- $x \in V$ excites at time t if its internal dynamic is fluctuated by some nb at time t (GHM: $0 \mapsto 1$, CCA: $i \mapsto i + 1 \mod \kappa$, and FCA: $i \mapsto i$ from time t to t+1)
- X_t fixates if every vertex excites only finitely many times and fluctuates otherwise
- X_t synchronizes if $X_t \equiv Const.$ for all large t, and clusters if it synchronizes "locally"
- For each $x \in V$, define its **activity** $\alpha(x)$ by

$$\alpha(x) = \limsup_{t \to \infty} \frac{\operatorname{ne}_t(x)}{t} \tag{4}$$

where $ne_t(x) = \sum_{s=0}^{t-1} \mathbf{1}_{\{x \text{ excites at time } s\}}$

• X_t synchronizes weakly if $\alpha(x) = 0$ for all $x \in V$, and oscillates otherwise

2. κ -color Excitable Media on $\mathbb Z$

• For a fixed $\kappa \geq 3$, put uniform product probability measure \mathbb{P} on $\mathbb{Z}_{\kappa}^{\mathbb{Z}}$, evolve GHM, CCA, or FCA dynamics starting from a random κ -coloring X_0 on \mathbb{Z} drawn from \mathbb{P} .

- For a fixed $\kappa \geq 3$, put uniform product probability measure \mathbb{P} on $\mathbb{Z}_{\kappa}^{\mathbb{Z}}$, evolve GHM, CCA, or FCA dynamics starting from a random κ -coloring X_0 on \mathbb{Z} drawn from \mathbb{P} .
- Does each site excite only finitely many times a.s.? fixation

- For a fixed $\kappa \geq 3$, put uniform product probability measure \mathbb{P} on $\mathbb{Z}_{\kappa}^{\mathbb{Z}}$, evolve GHM, CCA, or FCA dynamics starting from a random κ -coloring X_0 on \mathbb{Z} drawn from \mathbb{P} .
- Does each site excite only finitely many times a.s.? fixation
- Does each site excite i.o. a.s.? fluctuation

- For a fixed $\kappa \geq 3$, put uniform product probability measure \mathbb{P} on $\mathbb{Z}_{\kappa}^{\mathbb{Z}}$, evolve GHM, CCA, or FCA dynamics starting from a random κ -coloring X_0 on \mathbb{Z} drawn from \mathbb{P} .
- Does each site excite only finitely many times a.s.? fixation
- Does each site excite i.o. a.s.? fluctuation
- If X_t fluctuates, does the frequency of excitation decay to zero? - weak synchronization and oscillation

- For a fixed $\kappa \geq 3$, put uniform product probability measure \mathbb{P} on $\mathbb{Z}_{\kappa}^{\mathbb{Z}}$, evolve GHM, CCA, or FCA dynamics starting from a random κ -coloring X_0 on \mathbb{Z} drawn from \mathbb{P} .
- Does each site excite only finitely many times a.s.? fixation
- Does each site excite i.o. a.s.? fluctuation
- If X_t fluctuates, does the frequency of excitation decay to zero? - weak synchronization and oscillation
- If X_t fluctuates, does it tend to synchronize locally? clustering

CCA on \mathbb{Z}

Theorem (Fisch 1990 ⁴)

 κ -color CCA on $\mathbb Z$ fixates if and only if $\kappa \geq 5$

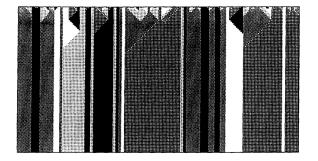


Figure: 5-color CCA on $\mathbb Z$

⁴Robert Fisch. "Cyclic cellular automata and related processes". In: *Physica D: Nonlinear Phenomena* 45.1 (1990), pp. 19–25

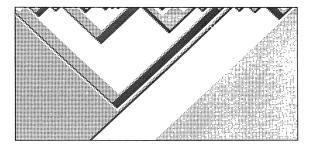
CCA on \mathbb{Z}

Introduction

Theorem (Fisch 1992 ⁵)

3-color CCA on \mathbb{Z} clusters. Furthermore, for any $[x,y] \subset \mathbb{Z}$,

$$\mathbb{P}(X_t \neq Const. \ on \ [x,y]) = \Theta(t^{-1/2}).$$



Robert Fisch. "Clustering in the one-dimensional three-color cyclic cellular automaton". In: The Annals of Probability (1992), pp. 1528-1548

CCA on \mathbb{Z}

Introduction

Theorem (Fisch 1992 ⁶)

3-color CCA on $\mathbb Z$ *clusters. Furthermore, for any* $[x,y] \subset \mathbb Z$ *,*

$$\mathbb{P}(X_t \neq Const. \ on \ [x,y]) = \Theta(t^{-1/2}).$$

Proof uses a connection between embedded edge particle system and random walk

GHM on \mathbb{Z}

Theorem (Durrett and Steif 1991, Fisch and Gravner 1995)

For any $\kappa \geq 3$, κ -color GHM on $\mathbb Z$ clusters and for any $[x,y] \subset \mathbb Z$,

$$\mathbb{P}(X_t \neq Const. \ on \ [x,y]) = \Theta(t^{-1/2}).$$

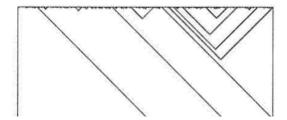


Figure: 4-color GHM on \mathbb{Z}

GHM on \mathbb{Z}

Introduction

Theorem (Durrett and Steif 1991 7 . Fisch and Gravner 1995 8)

For any $\kappa \geq 3$, κ -color GHM on \mathbb{Z} clusters and for any $[x,y] \subset \mathbb{Z}$,

$$\mathbb{P}(X_t \neq Const. \ on \ [x,y]) = \Theta(t^{-1/2}).$$

Similar technique for 3-color CCA on \mathbb{Z} was incorporated

Richard Durrett and Jeffrey E Steif. "Some rigorous results for the Greenberg-Hastings model". In: Journal of Theoretical Probability 4.4 (1991), pp. 669-690

Robert Fisch and Janko Gravner. "One-dimensional deterministic Greenberg-Hastings models". In: Complex Systems 9.5 (1995), pp. 329-348

FCA on \mathbb{Z}

Theorem (L., Sivakoff 2015)

For any $\kappa \geq 3$, κ -color FCA on $\mathbb Z$ clusters and for any $[x,y] \subset \mathbb Z$,

$$\mathbb{P}(X_t \neq Const. \ on \ [x,y]) = t^{-1/2 + o(1)}.$$

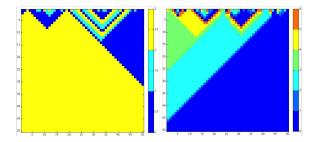


Figure: 3 and 6-color FCA on \mathbb{Z}

Theorem (L., Sivakoff 2015 ⁹)

For any $\kappa \geq 3$, κ -color FCA on \mathbb{Z} clusters and for any $[x,y] \subset \mathbb{Z}$,

$$\mathbb{P}(X_t \neq Const. \ on \ [x,y]) = t^{-1/2 + o(1)}.$$

Also similar technique is used but need to handle local dependence.

This introduces o(1) correction term

Lower bound needs a new technique

H. Lyu and D. Siyakoff, "Synchronization of finite-state pulse-coupled oscillators on Z". In: In preperation (2016)

Embedded edge particle system

The evolution of "domain walls" behaves like an annihilating particle system:

1	0	2	2	0	2	0	0	0	2	0	1
1	1	0	0	0	0	0	0	0	0	1	1
1	1	1	0	0	0	0	0	0	1	1	1
1	1	1	1	0	0	0	0	1	1	1	1
1	1	1	1	1	0	0	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1

Figure: 3-color CCA on one dimension

Embedded edge particle system

The evolution of "domain walls" behaves like an annihilating particle system:

1-	→ 0-	> 2	2←	-0-	> 2←	-0	0	0-	> 2←	-0←	-1
1	1-	→ 0	0	0	0	0	0	0	0<	-1	1
1	1	1-	> 0	0	0	0	0	0+	-1	1	1
1	1	1	1-	> 0	0	0	0<	-1	1	1	1
1	1	1	1	1-	> 0	0<	-1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1

Figure: 3-color CCA on one dimension

Embedded edge particle system

The evolution of "domain walls" behaves like an annihilating particle system:

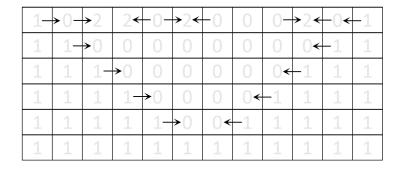
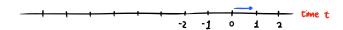


Figure: 3-color CCA on one dimension

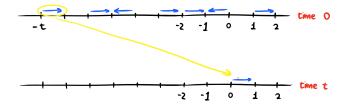
Clustering and survival of a random walk

Suppose there is a right particle on the edge (0,1) at time t.



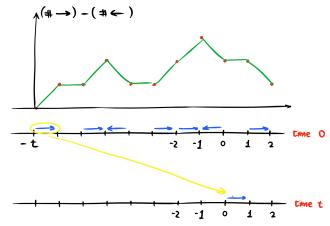
Clustering and survival of a random walk

This particle was distance t away at time 0 and lives up to time t, withtout being annihilated by a left particle.



Clustering and survival of a random walk

This requires #(right particle) > #(left particle) at every intermediate edge.



$$\mathbb{P}\left(\begin{array}{l} \exists \text{ right particle at} \\ \text{the origin at time } t \end{array} \right) \ = \ \mathbb{P}\left(\begin{array}{l} \mathsf{SRW starting from \ edge} \ -t \\ \mathsf{survives} \ 2t+1 \ \mathsf{steps} \end{array} \right) \\ = \ \Theta(1/\sqrt{t}) \qquad (\mathsf{Sparre \ Anderson \ thm})$$

$$\mathbb{P}\left(\begin{array}{l} \exists \text{ right particle at} \\ \text{the origin at time } t \end{array} \right) \ = \ \mathbb{P}\left(\begin{array}{l} \mathsf{SRW \ starting \ from \ edge} \ -t \\ \mathsf{survives} \ 2t+1 \ \mathsf{steps} \end{array} \right) \\ = \ \Theta(1/\sqrt{t}) \qquad \mathsf{(Sparre \ Anderson \ thm)}$$

• In fact, different models depending on κ induces different kinds of random walks, not necessarily the simple random walk.

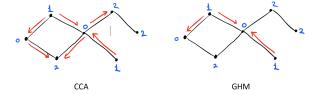
$$\begin{array}{ll} \textit{CCA} & \kappa = 3 \leadsto \mathsf{SRW}, \; \kappa = 4 \leadsto \mathsf{RW} \; \mathsf{w/} \; \mathsf{long} \; \mathsf{range} \; \mathsf{correlation} \\ & \kappa \geq 5 \leadsto \mathsf{biased} \; \mathsf{RW} \\ \textit{GHM} & \kappa \geq 3 \leadsto \mathsf{RW} \; \mathsf{w/} \; \mathsf{i.i.d.} \; \mathsf{increments} \\ \textit{FCA} & \kappa \geq 3 \leadsto \mathsf{RW} \; \mathsf{w/} \; \mathsf{locally} \; \mathsf{correlated} \; \mathsf{increments} \\ \end{array}$$

3. 3-color excitable media on general graphs

G = (V, E) a simple graph, $(X_t)_{t>0}$ a 3-color CCA or GHM trajectory.

• Define **edge configuration** $dX_t : \vec{E} \to \{-1, 0, 1\}$ by

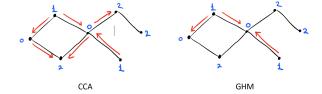
$$dX_t(x,y) = 1 \Leftrightarrow y \text{ excites } x \text{ at time } t$$



G = (V, E) a simple graph, $(X_t)_{t>0}$ a 3-color CCA or GHM trajectory.

• Define **edge configuration** $dX_t: \vec{E} \to \{-1, 0, 1\}$ by

$$dX_t(x,y) = 1 \Leftrightarrow y \text{ excites } x \text{ at time } t$$



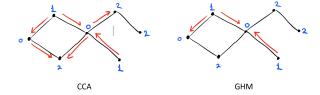
• For each directed walk $\vec{W} = (w_1, x_2, \dots, w_{k+1})$, define **path** integral

$$\int_{\vec{W}} dX_t = \sum_{i=1}^k dX_t(w_i, x_{i+1})$$

G = (V, E) a simple graph, $(X_t)_{t>0}$ a 3-color CCA or GHM trajectory.

• Define **edge configuration** $dX_t: \vec{E} \to \{-1, 0, 1\}$ by

$$dX_t(x,y) = 1 \Leftrightarrow y \text{ excites } x \text{ at time } t$$



• For each directed walk $\vec{W} = (w_1, x_2, \dots, w_{k+1})$, define **path** integral

$$\int_{\vec{W}} dX_t = \sum_{i=1}^k dX_t(w_i, x_{i+1})$$

Say dX_t is **irrotational** if all of its contour integrals vanish.

Key lemma

Introduction

Lemma

G = (V, E) a simple graph, $(X_t)_{t>0}$ a 3-color CCA or GHM trajectory. Let $ne_t(x) = \sum_{s=0}^{t-1} \mathbf{1}(x \text{ is excited at time s})$. Then

$$\mathtt{ne}_t(x) = M_t(x) := \max_{|\vec{P}| \le t} \int_{\vec{W}} dX_0$$

where the maximum runs over all directed walks \vec{W} of length < t starting from x.

Lemma

G = (V, E) a simple graph, $(X_t)_{t>0}$ a 3-color CCA or GHM trajectory. Let $ne_t(x) = \sum_{s=0}^{t-1} \mathbf{1}(x \text{ is excited at time s})$. Then

$$\mathtt{ne}_t(x) = M_t(x) := \max_{|\vec{P}| < t} \int_{\vec{W}} dX_0$$

where the maximum runs over all directed walks $ec{W}$ of length < t starting from x.

This implies:

Path integrals of dX_0 are (uniformly) bounded $\Leftrightarrow x$ excites only finitely many times (hence X_t fixates)

 $M_t(x)$ grows linearly $\Leftrightarrow X_t$ oscillates

 $M_t(x)$ grows sublinearly $\Leftrightarrow X_t$ synchronizes weakly

Theorem (Gravner, L., and Sivakoff 2016 $^{ m 10}$)

 X_t synchronizes if and only if dX_0 is irrotational. Furthermore,

- (i) If dX_0 is irrotational, then X_t synchronizes in D times where D is the diameter of G:
- (ii) If dX_0 is not irrotational, then for each node $x \in V$, we have

$$\lim_{t \to \infty} \frac{\operatorname{ne}_t(x)}{t} = \sup_{\vec{C}} \frac{1}{|V(\vec{C})|} \oint_{\vec{C}} dX_0$$
 (5)

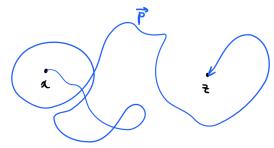
where the supremum runs over all closed directed cycles C in G.

J. Gravner, H. Lyu, and D. Siyakoff, "Limiting bahayior of 3-color excitable media on arbitrary graphs". In: Submitted. arXiv:1610.07320 (2016)

On finite graphs

Theorem

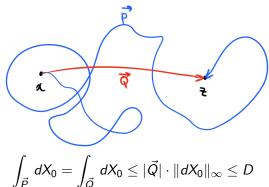
(i) If dX_0 is irrotational, then X_t synchronizes in D times where D is the diameter of G;



Tournament expansion

Theorem

(i) If dX_0 is irrotational, then X_t synchronizes in D times where D is the diameter of G;



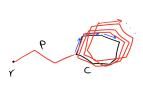
On finite graphs

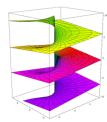
Theorem

(ii) If dX_0 is not irrotational, then for each node $x \in V$, we have

$$\lim_{t \to \infty} \frac{\operatorname{ne}_t(x)}{t} = \sup_{\vec{C}} \frac{1}{|V(\vec{C})|} \oint_{\vec{C}} dX_0 \tag{6}$$

where $ne_t(x)$ is the number of excitations x had upto time t and the supremum runs over all closed directed cycles \vec{C} in G.





On infinite graphs with cycles

Introduction

Theorem (Gravner, L., Sivakoff 2016)

The random 3-color CCA or GHM trajectory $(X_t)_{t\geq 0}$ on G=(V,E) oscillates with some positive probability if G contains a cycle. Furthermore, suppose G has a matching $\{e_1,\cdots,e_k\}$ and distinct cycles C_1,\cdots,C_k such that $e_i\in E(C_j)$ iff i=j for all $1\leq i,j\leq k$. Then

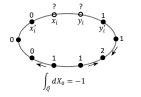
$$\mathbb{P}(X_t \text{ synchronizes weakly}) \le (7/9)^k. \tag{7}$$

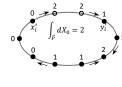
On infinite graphs with cycles

Theorem (Gravner, L., Sivakoff 2016)

The random 3-color CCA or GHM trajectory $(X_t)_{t\geq 0}$ on G = (V, E) oscillates with some positive probability if G contains a cycle. Furthermore, suppose G has a matching $\{e_1, \dots, e_k\}$ and distinct cycles C_1, \dots, C_k such that $e_i \in E(C_i)$ iff i = j for all $1 \le i, j \le k$. Then

$$\mathbb{P}(X_t \text{ synchronizes weakly}) \le (7/9)^k. \tag{7}$$





Some simulations: 3-color CCA

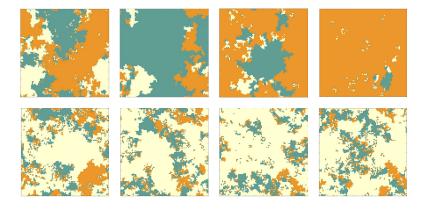


Figure: (Top row) Snapshots of 3-color CCA on a uniform spanning tree of a 100 by 100 torus, each 100 iterations from left to right. (Second row) Dynamics after 12 random edges are added to the spanning tree. Orange =0, green=1, and yellow=2.

Some simulations: 3-color GHM

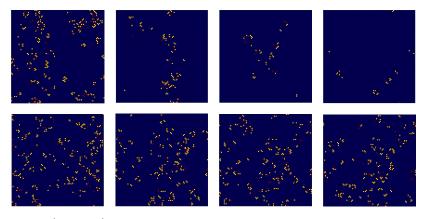
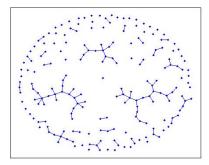


Figure: (Top row) Snapshots of 3-color GHM on a uniform spanning tree of a 100 by 100 torus, each 100 iterations from left to right. (Second row) Dynamics after 12 random edges are added to the spanning tree. Dark blue=0, yellow=1, and red=2.

On the Erdös-Rényi random graph

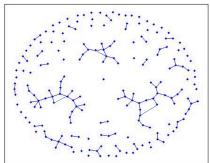
The Erdös-Rényi random graph, denoted G = G(n, p) = ([n], E), is the graph with vertex set [n] where each pair $\{i, j\} \in E$ by an independent coin flip of probability p.

(Fact 1) If p = p(n) = o(1/n), then G(n, p) has no cycle asymptotically almost surely.



The Erdös-Rényi random graph, denoted G = G(n, p) = ([n], E), is the graph with vertex set [n] where each pair $\{i, j\} \in E$ by an independent coin flip of probability p.

(Fact 2) If $p = \lambda/n$ for any $0 < \lambda < 1$, then G(n, p) contains a cycle with positive probability and each component is either a tree or contains exactly one cycle a.s.s.



On the Erdös-Rényi random graph

The Erdös-Rényi random graph, denoted G = G(n, p) = ([n], E), is the graph with vertex set [n] where each pair $\{i, j\} \in E$ by an independent coin flip of probability p.

(Fact 3) If $p = \lambda/n$ for any $\lambda > 1$, then largest component of G is of size O(n) and contains O(n) cycles.

On the Erdös-Rényi random graph

Theorem (Gravner, L., Sivakoff 2016)

Let G = G(n, p) be the Erdös-Rényi random graph and let $(X_t)_{t \ge 0}$ be a random CCA or GHM trajectory. Then

- (i) If p = o(1/n) then X_t synchronizes on each component of G a.a.s.
- (ii) If $p = \lambda/n$ for any $0 < \lambda < 1$, then there exists some constant $C = C(\lambda)$ such that for all sufficiently large n,
 - $2/9 \le \mathbb{P}(X_t \text{ oscillates on some component}) \le 1 e^{-Cn}$. (8)
- (iii) If $p = \lambda/n$ for any $\lambda > 1$, then there exists a constant $D = D(\lambda) > 0$ such that for all sufficiently large n,
 - $\mathbb{P}(X_t \text{ oscillates on the largest component}) \ge 1 e^{-Dn}$. (9

Let $\Gamma = (V, E)$ be an infinite tree with root 0, X_0 a random 3-coloring on V chosen from the u.p.m.

Let $\Gamma = (V, E)$ be an infinite tree with root 0, X_0 a random 3-coloring on V chosen from the u.p.m.

Define the associated Γ -indexed walk $\{S_{\sigma}\}_{{\sigma}\in V}$ by

$$S_{\sigma}=\int_{\vec{P}(0,\sigma)}dX_{0}.$$

On infinite trees

Let $\Gamma = (V, E)$ be an infinite tree with root 0, X_0 a random 3-coloring on V chosen from the u.p.m.

Define the associated Γ -indexed walk $\{S_{\sigma}\}_{{\sigma}\in V}$ by

$$S_{\sigma} = \int_{\vec{P}(0,\sigma)} dX_0.$$

By the key lemma,

$$\alpha(0) = \limsup_{t \to \infty} \frac{\mathtt{ne}_t(0)}{t} = \limsup_{t \to \infty} \frac{1}{t} \max_{|\sigma| \le t} S_{\sigma}$$

On infinite trees

Introduction

Let $\Gamma = (V, E)$ be an infinite tree with root 0, X_0 a random 3-coloring on V chosen from the u.p.m.

Define the associated Γ -indexed walk $\{S_{\sigma}\}_{\sigma \in V}$ by

$$S_{\sigma} = \int_{\vec{P}(0,\sigma)} dX_0.$$

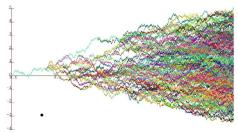
By the key lemma,

$$lpha(0) = \limsup_{t o \infty} \frac{\operatorname{ne}_t(0)}{t} = \limsup_{t o \infty} \frac{1}{t} \max_{|\sigma| \le t} S_{\sigma}$$

This equals to the **cloud speed** v_c of the Γ -indexed walk $\{S_{\sigma}\}_{\sigma\in V}$, where

$$v_c = \limsup_{t \to \infty} \frac{1}{t} \max_{|\sigma| = t} S_{\sigma}$$

¹¹Itai Benjamini and Yuval Peres. "Tree-indexed random walks on groups and first passage percolation". In: Probability Theory and Related Fields 98.1 (1994), pp. 91-112.



 $^{^{11}}$ ltai Benjamini and Yuval Peres. "Tree-indexed random walks on groups and first passage percolation". In: Probability Theory and Related Fields 98.1 (1994), pp. 91-112.

 Leaves can mess up with the cloud speed, and in our case the increments are 1-correlated.

 $^{^{11}}$ ltai Benjamini and Yuval Peres. "Tree-indexed random walks on groups and first passage percolation". In: Probability Theory and Related Fields 98.1 (1994), pp. 91-112.



- Leaves can mess up with the cloud speed, and in our case the increments are 1-correlated.
- We generalized their result to general trees with leaves and 1-correlated increments.

 $^{^{11}}$ ltai Benjamini and Yuval Peres. "Tree-indexed random walks on groups and first passage percolation". In: Probability Theory and Related Fields 98.1 (1994), pp. 91–112.

Theorem (Gravner, L., Sivakoff 2016)

Let $\Gamma = (V, E)$ be an infinite rooted tree and $(X_t)_{t\geq 0}$ the random 3-color CCA or GHM trajectory on Γ . Then

(i) The activity $\alpha(x)$ of any $x \in V$ equals to the cloud speed v_c of Γ -indexed random walk $\{S_{\sigma}\}_{{\sigma} \in V}$.

Theorem (Gravner, L., Sivakoff 2016)

Let $\Gamma = (V, E)$ be an infinite rooted tree and $(X_t)_{t\geq 0}$ the random 3-color CCA or GHM trajectory on Γ . Then

- (i) The activity $\alpha(x)$ of any $x \in V$ equals to the cloud speed v_c of Γ -indexed random walk $\{S_{\sigma}\}_{{\sigma} \in V}$.
- (ii) X_t synchronizes weakly if and only if Γ has zero reduced volume entropy.

3-color CCA and GHM on infinite trees

Theorem (Gravner, L., Sivakoff 2016)

Let $\Gamma = (V, E)$ be an infinite rooted tree and $(X_t)_{t>0}$ the random 3-color CCA or GHM trajectory on Γ . Then

- (i) The activity $\alpha(x)$ of any $x \in V$ equals to the cloud speed v_c of Γ -indexed random walk $\{S_{\sigma}\}_{{\sigma} \in V}$.
- (ii) X_t synchronizes weakly if and only if Γ has zero reduced volume entropy.
- (iii) Explict upper and lower bounds on $v_c \cdots$.

Tournament expansion

Theorem (Gravner, L., Sivakoff 2016)

Let $\Gamma = (V, E)$ be an infinite rooted tree and $(X_t)_{t\geq 0}$ the random 3-color CCA or GHM trajectory on Γ . Then

- (i) The activity $\alpha(x)$ of any $x \in V$ equals to the cloud speed v_c of Γ -indexed random walk $\{S_{\sigma}\}_{{\sigma} \in V}$.
- (ii) X_t synchronizes weakly if and only if Γ has zero reduced volume entropy.
- (iii) Explict upper and lower bounds on $v_c \cdots$.
- On binary trees, the activities are given by

$$\alpha_{\mathsf{CCA}} = 3\alpha_{\mathsf{GHM}} = 0.86824163\cdots$$

3-color CCA and GHM on infinite trees

Theorem (Gravner, L., Sivakoff 2016)

Let $\Gamma = (V, E)$ be an infinite rooted tree and $(X_t)_{t>0}$ the random 3-color CCA or GHM trajectory on Γ . Then

- (i) The activity $\alpha(x)$ of any $x \in V$ equals to the cloud speed v_c of Γ -indexed random walk $\{S_{\sigma}\}_{{\sigma} \in V}$.
- (ii) X_t synchronizes weakly if and only if Γ has zero reduced volume entropy.
- (iii) Explict upper and lower bounds on $v_c \cdots$.
- On binary trees, the activities are given by

$$\alpha_{\mathsf{CCA}} = 3\alpha_{\mathsf{GHM}} = 0.86824163\cdots$$

• On d-ary trees with $d \geq 3$,

$$\alpha_{\text{CCA}} = 3\alpha_{\text{GHM}} = 1$$

4. Tournament expansion: proof of the key lemma

Lemma

G = (V, E) a simple graph, $(X_t)_{t \ge 0}$ a 3-color CCA or GHM trajectory. Let $\operatorname{ne}_t(x) = \sum_{s=0}^{t-1} \mathbf{1}(x \text{ is excited at time s})$. Then

$$\operatorname{ne}_t(x) = M_t(x) := \max_{|\vec{P}| \le t} \int_{\vec{W}} dX_0$$

where the maximum runs over all directed walks \vec{W} of length $\leq t$ starting from x.

We associate a monotone comparison process called **tournament process** (inspired by a consensus algorithm)

We associate a monotone comparison process called tournament **process** (inspired by a consensus algorithm)

• G = (V, E) a locally finite graph, $rk_t : V \to \mathbb{Z}$ ranking on Gat time t

We associate a monotone comparison process called **tournament process** (inspired by a consensus algorithm)

- G = (V, E) a locally finite graph, $rk_t : V \to \mathbb{Z}$ ranking on Gat time t
- Transition map:

$$\mathtt{rk}_{t+1}(x) = \max\{\mathtt{rk}_t(y) \,|\, y \in \mathit{N}(x) \cup \{x\}\}.$$

We associate a monotone comparison process called **tournament process** (inspired by a consensus algorithm)

- G = (V, E) a locally finite graph, $\mathtt{rk}_t : V \to \mathbb{Z}$ ranking on G at time t
- Transition map:

$$rk_{t+1}(x) = max\{rk_t(y) | y \in N(x) \cup \{x\}\}.$$

• Example on P_4 :

$$\begin{array}{cccc}
0 & 1 & 4 \\
1 & 4 & 4 & 4 \\
4 & 4 & 4 & 4
\end{array}$$

We associate a monotone comparison process called **tournament process** (inspired by a consensus algorithm)

- G = (V, E) a locally finite graph, $rk_t : V \to \mathbb{Z}$ ranking on Gat time t
- Transition map:

$$rk_{t+1}(x) = max\{rk_t(y) | y \in N(x) \cup \{x\}\}.$$

• Example on P_4 :

• For each site x, its rank is non-decreasing in time

We associate a monotone comparison process called **tournament process** (inspired by a consensus algorithm)

- G = (V, E) a locally finite graph, $\mathtt{rk}_t : V \to \mathbb{Z}$ ranking on G at time t
- Transition map:

$$\mathtt{rk}_{t+1}(x) = \max\{\mathtt{rk}_t(y) \,|\, y \in \mathit{N}(x) \cup \{x\}\}.$$

• Example on P_4 :

- For each site x, its rank is non-decreasing in time
- In fact, the dynamics is determined by

$$rk_t(x) = max\{rk_0(y) | d(x, y) < t\} =: M_t(x)$$

We would like to view

y excites x at time $t \Leftrightarrow \operatorname{rk}_t(y) > \operatorname{rk}_t(x)$

Key idea 1: unfold cyclic colors into linearly ordered ranks

We would like to view

$$y$$
 excites x at time $t \Leftrightarrow \mathtt{rk}_t(y) > \mathtt{rk}_t(x)$

But since

$$y$$
 excites x at time $t \Leftrightarrow dX_t(y,x) = 1$,

edge configuration dX_t gives gradient of ranks along edges

Key idea 1: unfold cyclic colors into linearly ordered ranks

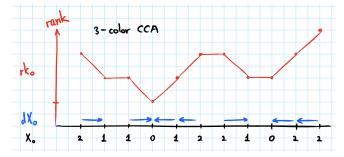
We would like to view

$$y$$
 excites x at time $t \Leftrightarrow \mathrm{rk}_t(y) > \mathrm{rk}_t(x)$

But since

y excites x at time
$$t \Leftrightarrow dX_t(y,x) = 1$$
,

edge configuration dX_t gives gradient of ranks along edges

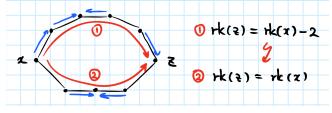


Key idea 2: unfold space as well

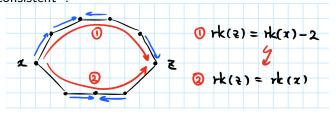
 But what if there are multiple paths from x to z which are not "consistent"?

Key idea 2: unfold space as well

• But what if there are multiple paths from x to z which are not "consistent"?



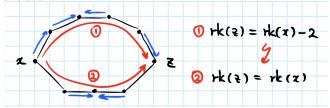
 But what if there are multiple paths from x to z which are not "consistent"?



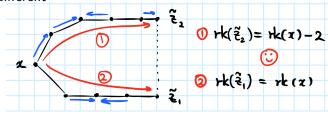
• A **bold** way to go: declare endpoints of different paths are "different"

Key idea 2: unfold space as well

 But what if there are multiple paths from x to z which are not "consistent"?



• A **bold** way to go: declare endpoints of different paths are "different"



Proof of the key Lemma: Tournament expansion

• Universal covering space $\mathcal{T}_X = (\mathcal{V}, \mathcal{E})$ of G = (V, E) based at $x \in V$:

> V = set of all non-backtracking walks starting from xidentify null walk with x itself;

 \mathcal{E} = given by 1-step extension

Proof of the key Lemma: Tournament expansion

• Universal covering space $\mathcal{T}_X = (\mathcal{V}, \mathcal{E})$ of G = (V, E) based at $x \in V$:

V = set of all non-backtracking walks starting from xidentify null walk with x itself;

 \mathcal{E} = given by 1-step extension

• Define $\mathrm{Rk}_t(x) = \mathrm{ne}_t(x) = \sum_{s=0}^{t-1} \mathbf{1}_{\{x \text{ excites at time } s\}}$ for all t > 0; extend to all $\tilde{z} \in \mathcal{V}$ via

$$\mathrm{Rk}_t(\tilde{z}) := \mathrm{Rk}_t(x) + \int_{\vec{P}} dX_t$$

• Universal covering space $\mathcal{T}_X = (\mathcal{V}, \mathcal{E})$ of G = (V, E) based at $x \in V$:

> V = set of all non-backtracking walks starting from xidentify null walk with x itself;

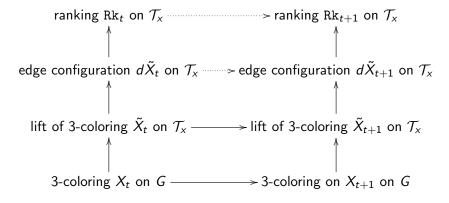
 \mathcal{E} = given by 1-step extension

• Define $\mathrm{Rk}_t(x) = \mathrm{ne}_t(x) = \sum_{s=0}^{t-1} \mathbf{1}_{\{x \text{ excites at time } s\}}$ for all t > 0; extend to all $\tilde{z} \in \mathcal{V}$ via

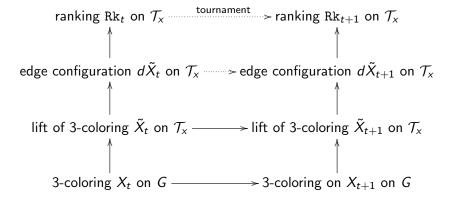
$$\mathtt{Rk}_t(ilde{z}) := \mathtt{Rk}_t(x) + \int_{ec{P}} dX_t$$

 $\bullet(X_t)_{t\geq 0}$ induces tournament expansion $(Rk_t)_{t\geq 0}$

A commuting diagram



A commuting diagram



$$\operatorname{ne}_t(x) \stackrel{\text{def}}{=} \operatorname{rk}_t(x) \stackrel{\text{TE}}{=} \max_{d(x,y) \le t} \operatorname{rk}_0(y) \stackrel{\text{def}}{=} \max_{|\vec{W}| \le t} \int_{\vec{W}} dX_0$$

The 4*-color problem: FCA on higher dimensions

Phenomenologies in 2D: spiral formation and oscillation

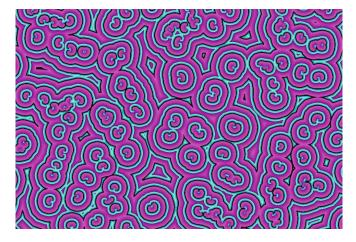


Figure: Range 4 box nbh, 8-color, threshold 8 GHM on \mathbb{Z}^2 . Image by D. Griffeath

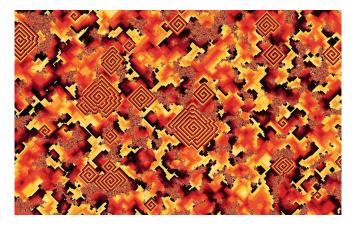


Figure: 16-color CCA on \mathbb{Z}^2 . Image by D. Griffeath

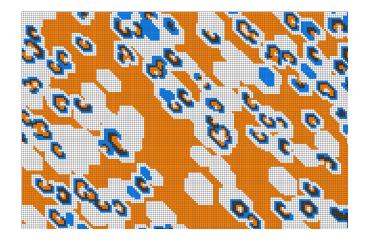


Figure: 4-color FCA on triangular grid

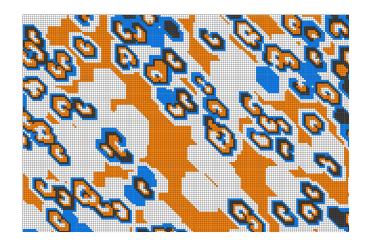


Figure: 4-color FCA on triangular grid

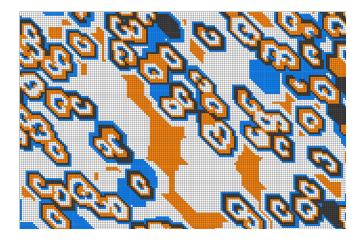


Figure: 4-color FCA on triangular grid

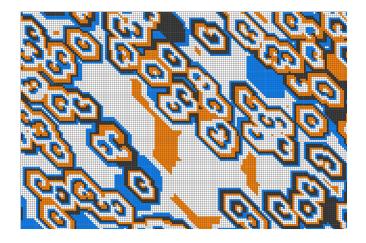


Figure: 4-color FCA on triangular grid

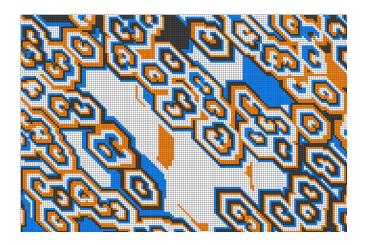


Figure: 4-color FCA on triangular grid

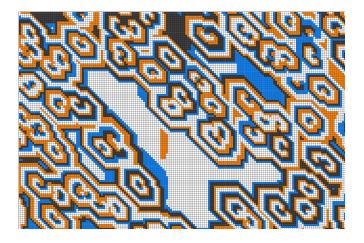


Figure: 4-color FCA on triangular grid

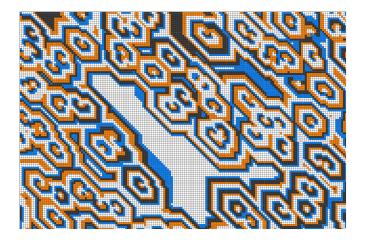


Figure: 4-color FCA on triangular grid

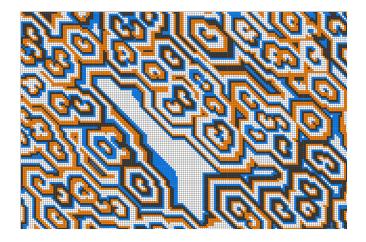


Figure: 4-color FCA on triangular grid

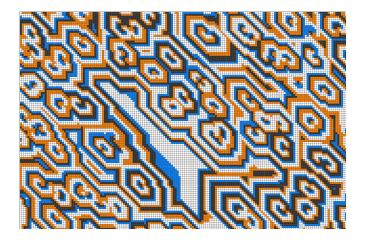


Figure: 4-color FCA on triangular grid

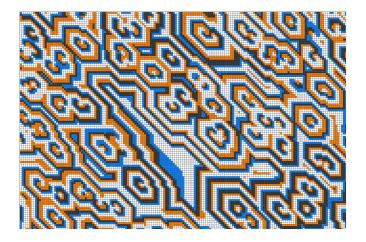


Figure: 4-color FCA on triangular grid

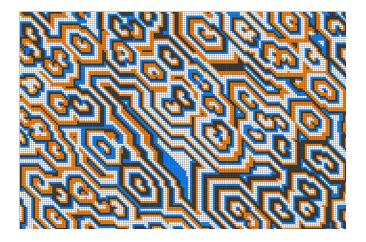


Figure: 4-color FCA on triangular grid

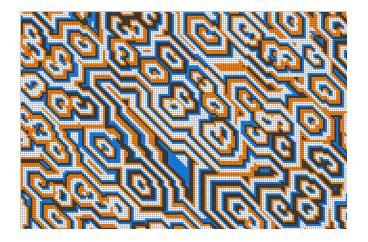


Figure: 4-color FCA on triangular grid

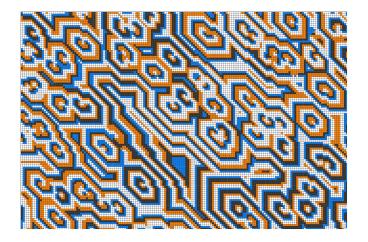


Figure: 4-color FCA on triangular grid

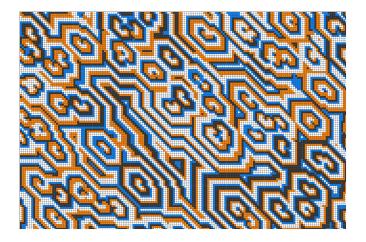


Figure: 4-color FCA on triangular grid

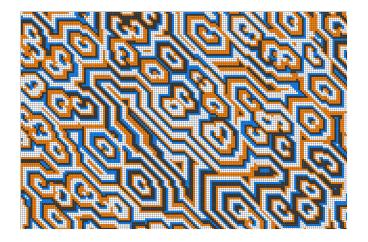


Figure: 4-color FCA on triangular grid

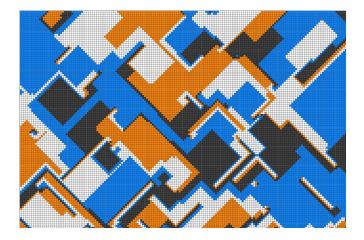


Figure: 4-color FCA on \mathbb{Z}^2

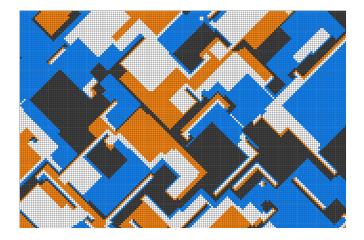


Figure: 4-color FCA on \mathbb{Z}^2

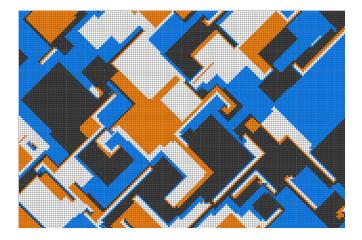


Figure: 4-color FCA on \mathbb{Z}^2

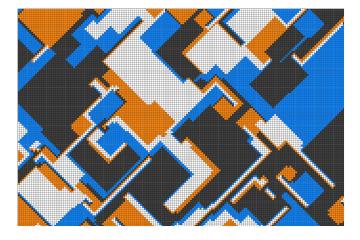


Figure: 4-color FCA on \mathbb{Z}^2

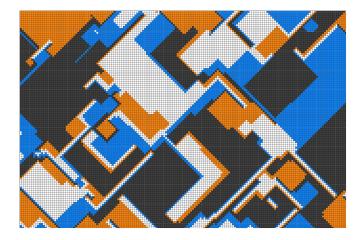


Figure: 4-color FCA on \mathbb{Z}^2

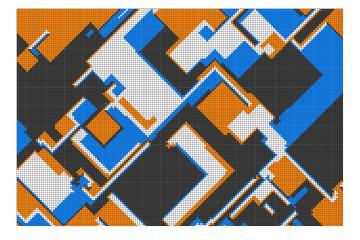


Figure: 4-color FCA on \mathbb{Z}^2

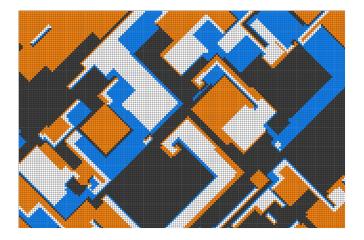


Figure: 4-color FCA on \mathbb{Z}^2

Figure: 4-color FCA on \mathbb{Z}^2

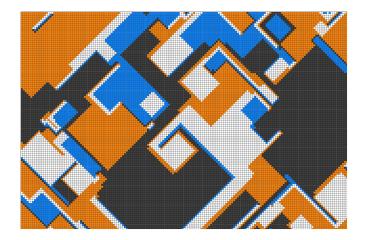


Figure: 4-color FCA on \mathbb{Z}^2

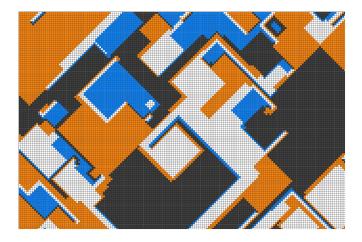


Figure: 4-color FCA on \mathbb{Z}^2

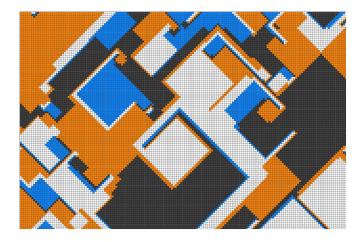


Figure: 4-color FCA on \mathbb{Z}^2

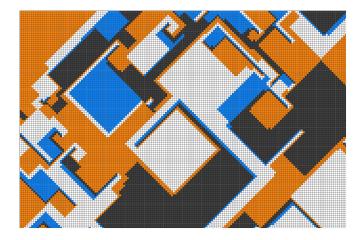


Figure: 4-color FCA on \mathbb{Z}^2

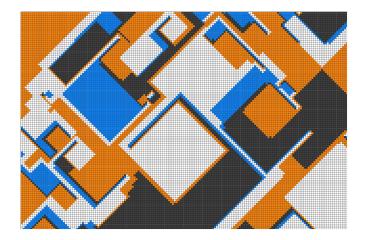


Figure: 4-color FCA on \mathbb{Z}^2

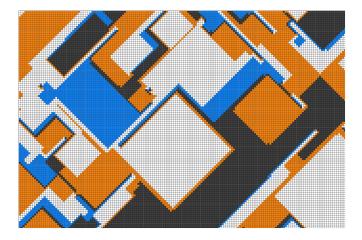


Figure: 4-color FCA on \mathbb{Z}^2

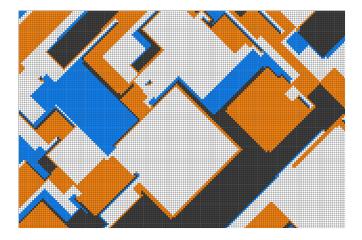


Figure: 4-color FCA on \mathbb{Z}^2

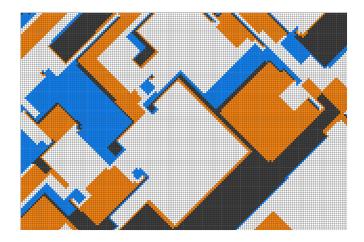


Figure: 4-color FCA on \mathbb{Z}^2

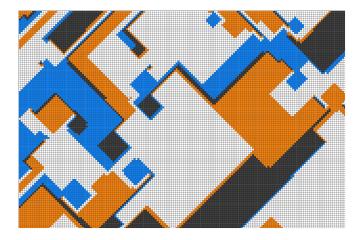


Figure: 4-color FCA on \mathbb{Z}^2

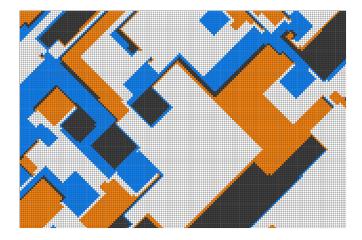


Figure: 4-color FCA on \mathbb{Z}^2

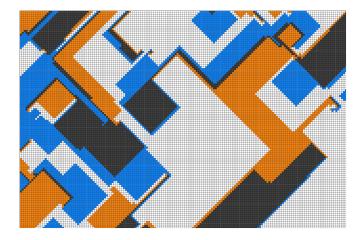


Figure: 4-color FCA on \mathbb{Z}^2

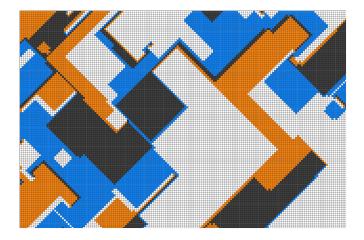


Figure: 4-color FCA on \mathbb{Z}^2

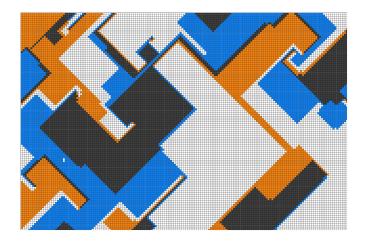


Figure: 4-color FCA on \mathbb{Z}^2



Figure: 4-color FCA on \mathbb{Z}^2

Figure: 4-color FCA on \mathbb{Z}^2

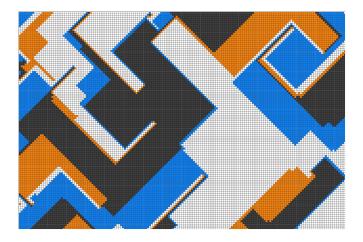


Figure: 4-color FCA on \mathbb{Z}^2

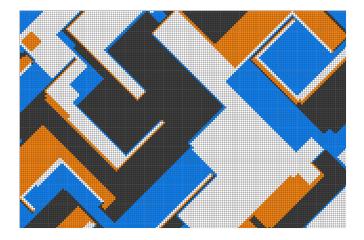


Figure: 4-color FCA on \mathbb{Z}^2

Figure: 4-color FCA on \mathbb{Z}^2

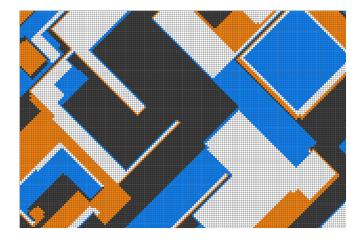


Figure: 4-color FCA on \mathbb{Z}^2

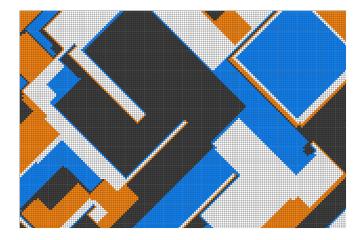


Figure: 4-color FCA on \mathbb{Z}^2

Figure: 4-color FCA on \mathbb{Z}^2

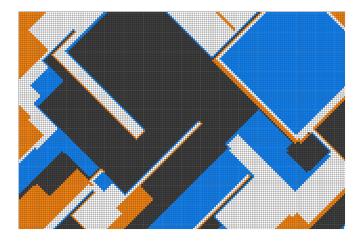


Figure: 4-color FCA on \mathbb{Z}^2

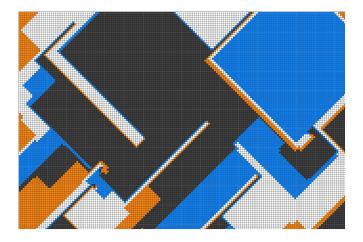


Figure: 4-color FCA on \mathbb{Z}^2

troduction Three κ -EM κ -EM on $\mathbb Z$ 3-EM on G Tournament expansion **The 4*-color problem**

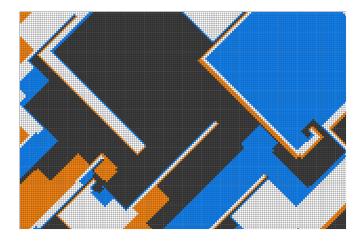


Figure: 4-color FCA on \mathbb{Z}^2

Figure: 4-color FCA on \mathbb{Z}^2

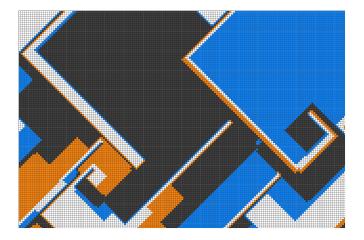


Figure: 4-color FCA on \mathbb{Z}^2

troduction Three κ -EM κ -EM on $\mathbb Z$ 3-EM on G Tournament expansion **The 4*-color problem**

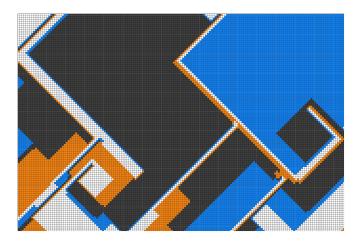


Figure: 4-color FCA on \mathbb{Z}^2

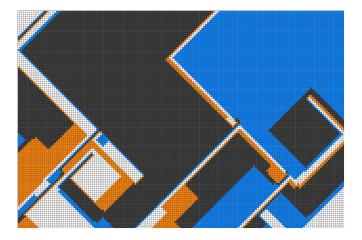


Figure: 4-color FCA on \mathbb{Z}^2

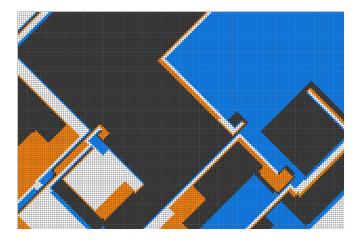


Figure: 4-color FCA on \mathbb{Z}^2

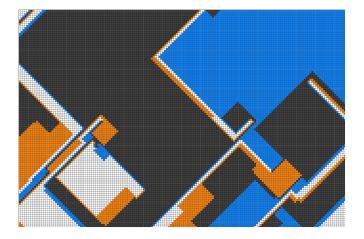


Figure: 4-color FCA on \mathbb{Z}^2

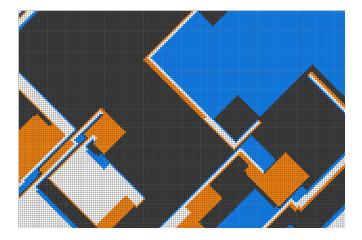


Figure: 4-color FCA on \mathbb{Z}^2

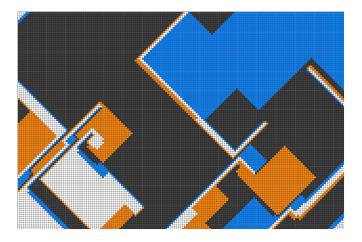
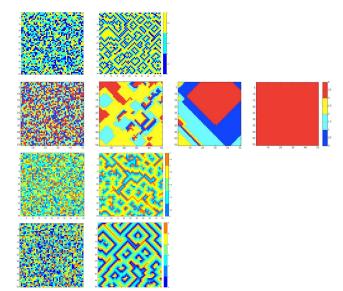


Figure: 4-color FCA on \mathbb{Z}^2

The 4-color criticality of FCA on \mathbb{Z}^d



FCA on \mathbb{Z}^d for d > 2

Conjecture. Let $\kappa \geq 3$ and $d \geq 2$. Let $(X_t)_{t>0}$ be a random κ -color FCA process on \mathbb{Z}^d where X_0 is drawn from the u.p.m. on $(\mathbb{Z}_{\kappa})^{\mathbb{Z}^d}$. Then

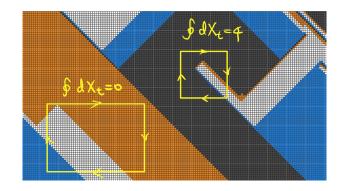
(i) If $\kappa = 4$, then \mathbb{P} -a.s. X_t clusters, i.e., for any finite region $\Omega_{\cap} \subset Z^2$, we have

$$\lim_{t \to \infty} \mathbb{P}(X_t \equiv \mathit{Const}. \ \mathsf{on} \ \Omega_0) = 1$$

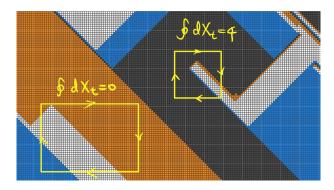
(ii) If $\kappa \neq 4$, then \mathbb{P} -a.s. X_t is uniformly locally periodic with period $\kappa + 1$, i.e., for each site $x \in \mathbb{Z}^2$,

$$\lim_{t\to\infty} \mathbb{P}(X_t(x) = X_{t+\kappa+1}(x)) = 1$$

A future direction

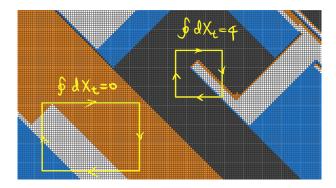


A future direction



e.g., tournament expansion w/ partially ordered ranking (for $\kappa \geq 4$)

A future direction



e.g., tournament expansion w/ partially ordered ranking (for $\kappa \geq$ 4) e.g., tournament expansion w/ restricted path integral (for 4FCA)

Thank you!

