Limiting behavior of 3-color excitable media on arbitrary graphs

Hanbaek Lyu

Joint work with David Sivakoff and Janko Gravner
The Ohio State University

www.hanbaeklyu.com

Joint Mathematics Meeting 2018, San Diego

Jan. 12 2018

Excitable Media

- An excitable medium is a network of dynamic units where each unit fluctuates its neighbors' internal dynamics on a particular event
- Waves of excitations (fluctuations) propagate across network, often leading to surprising self-organization in the system.
- Commonly modeled by reaction-diffusion equations in continuous setting.

Figure: (top) Cyclic AMP wave patterns in slime molds (by L. Yang) and (bottom) BZ oscillator (by Abteilung Biophysik Lab)

Discrete Excitable Media

A discrete framework - Generalized Cellular Automaton

- A graph G=(V,E), state (coloring) space \mathbb{Z}_{κ} , κ -coloring $X_t:V\to\mathbb{Z}_{\kappa}$
- Iteration of a locally defined deterministic transition map on an initial coloring X_0 gives a trajectory $(X_t)_{t>0}$

Discrete Excitable Media

A discrete framework - Generalized Cellular Automaton

- A graph G=(V,E), state (coloring) space \mathbb{Z}_{κ} , κ -coloring $X_t:V\to\mathbb{Z}_{\kappa}$
- Iteration of a locally defined deterministic transition map on an initial coloring X_0 gives a trajectory $(X_t)_{t\geq 0}$

Three discrete models for excitable media:

- 1. Greenberg-Hastings model (GHM) neural networks
- 2. Cyclic Cellular Automaton (CCA) chemical reaction
- 3. Firefly Cellular Automaton (FCA) pulse-coupled oscillators

κ -color Cyclic cellular automaton (CCA)

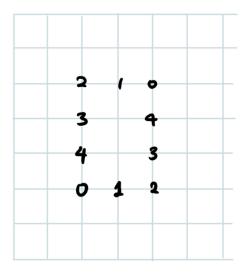
- Proposed by Fisch in 1990¹ as a discrete analogue of the cyclic particle system introduced by Bramson and Griffeath²
- Transition map:

$$\begin{cases} i \mapsto i + 1 \pmod{\kappa} & \text{if adj to a nb of color } i + 1 \\ i \mapsto i & \text{otherwise} \end{cases}$$

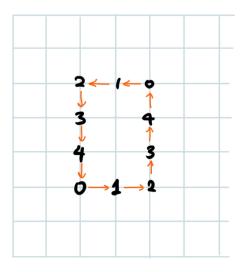
- Color increment $i \mapsto i + 1 \pmod{\kappa}$ is called **excitation**.
- Interpretation: color i + 1 "eats" color i; rock-paper-scissor

¹Robert Fisch. "Cyclic cellular automata and related processes". In: *Physica D: Nonlinear Phenomena* 45.1 (1990), pp. 19–25.

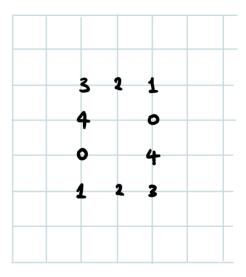
²Maury Bramson and David Griffeath. "Flux and fixation in cyclic particle systems". In: *The Annals of Probability* (1989), pp. 26–45.



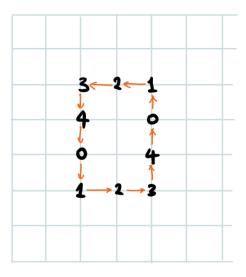
- Suppose colors increment by 1 along a closed walk
- In 1 iteration, all sites on the walk increment by 1
- Colors on the walk still increase by 1
- This repeats over and over



- Suppose colors increment by 1 along a closed walk
- In 1 iteration, all sites on the walk increment by 1
- ullet Colors on the walk still increase by 1
- This repeats over and over



- Suppose colors increment by 1 along a closed walk
- In 1 iteration, all sites on the walk increment by 1
- Colors on the walk still increase by 1
- This repeats over and over



- Suppose colors increment by 1 along a closed walk
- In 1 iteration, all sites on the walk increment by 1
- ullet Colors on the walk still increase by 1
- This repeats over and over

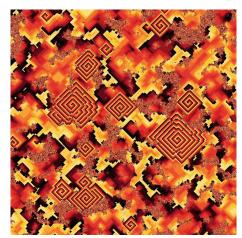


Figure: 16-color CCA on sqaure lattice

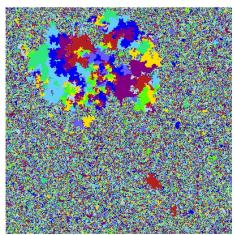
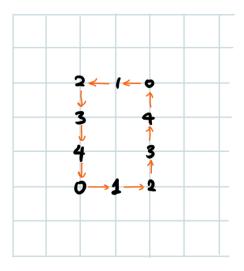
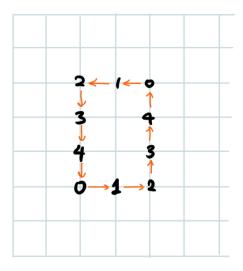


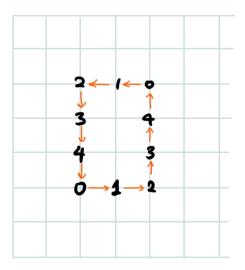
Figure: 9-color CCA on a uniform spanning tee of sqaure lattice



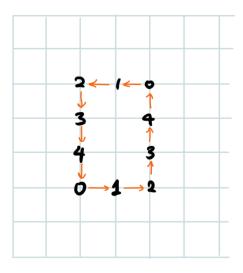
Q: How can we characterize a 'defect'? Is it invariant under dynamics? Does it have to be planted initially or could it spontaneously emerge later on?



- Q: How can we characterize a 'defect'? Is it invariant under dynamics? Does it have to be planted initially or could it spontaneously emerge later on?
- Q : If we don't have any defect, do we have fixation?

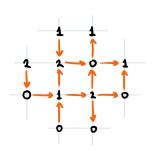


- Q: How can we characterize a 'defect'? Is it invariant under dynamics? Does it have to be planted initially or could it spontaneously emerge later on?
- Q : If we don't have any defect, do we have fixation?
- Q: If we have a defect, what happens to nearby sites? Can we say something about the rate of color change?



- Q: How can we characterize a 'defect'? Is it invariant under dynamics? Does it have to be planted initially or could it spontaneously emerge later on?
- Q : If we don't have any defect, do we have fixation?
- Q: If we have a defect, what happens to nearby sites? Can we say something about the rate of color change?
- A: We answer these questions completely for $\kappa = 3$.

Definition



• Define **edge configuration** $dX_t: E \rightarrow \{-1, 0, 1\}$ by

$$dX_t(x,y) = X_t(y) - X_t(x) \text{ (mod 3)}.$$

• For each directed walk $\vec{W} = (w_1, x_2, \dots, w_{k+1})$, define **path integral**

$$\int_{\vec{W}} dX_t = \sum_{i=1}^k dX_t(w_i, x_{i+1}).$$

 Say dX_t is conservative (no defect) if every contour integral is zero.

Key lemma

Lemma

G=(V,E) a simple graph, $(X_t)_{t\geq 0}$ a 3-color CCA trajectory. Let $\mathtt{ne}_t(x)=\sum_{s=0}^{t-1}\mathbf{1}(x \text{ is excited at time s})$. Then

$$\mathtt{ne}_t(x) = M_t(x) := \max_{|\vec{P}| \le t} \int_{\vec{W}} dX_0$$

where the maximum runs over all directed walks \vec{W} of length \leq t starting from x.

Key lemma

Lemma

G=(V,E) a simple graph, $(X_t)_{t\geq 0}$ a 3-color CCA trajectory. Let $\operatorname{ne}_t(x)=\sum_{s=0}^{t-1}\mathbf{1}(x \text{ is excited at time } s)$. Then

$$\mathtt{ne}_t(x) = M_t(x) := \max_{|\vec{P}| \le t} \int_{\vec{W}} dX_0$$

where the maximum runs over all directed walks \vec{W} of length \leq t starting from x.

This implies:

Path integrals of dX_0 are (uniformly) bounded $\Leftrightarrow x$ excites only finitely many times (hence X_t fixates)

Theorem (Gravner, L., and Sivakoff 2016 ³)

 X_t synchronizes if and only if dX_0 is conservative. Furthermore,

- (i) If dX_0 is conservative, then $X_t \equiv Const.$ for all $t \geq diam(G)$;
- (ii) If dX_0 is not conservative, then for each node $x \in V$, we have

$$\lim_{t \to \infty} \frac{\operatorname{ne}_t(x)}{t} = \sup_{\vec{C}} \frac{1}{|V(\vec{C})|} \oint_{\vec{C}} dX_0 \tag{1}$$

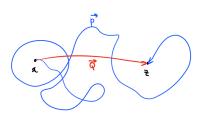
where the supremum runs over all closed directed cycles \vec{C} in G.

Janko Gravner, Hanbaek Lyu, and David Sivakoff. "Limiting behavior of 3-color excitable media on arbitrary graphs". In: Annals of Applied Probability (to appear) (2016)

Theorem

(i) If dX_0 is conservative, then $X_t \equiv Const.$ for all $t \geq diam(G) = D$;

Proof.



• For any walk \vec{P} , there exists another walk \vec{Q} with $|\vec{Q}| \leq D$ s.t.

$$\int_{\vec{P}} dX_0 = \int_{\vec{Q}} dX_0.$$

• So for any $t \ge D$,

$$ne_t(x) = ne_D(x)$$
.

• So no site changes its color after time $t \ge D$. But $\kappa = 3$.

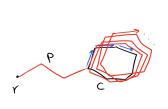
Theorem

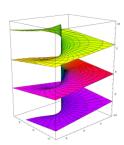
(ii) If dX_0 is not conservative, then for each node $x \in V$, we have

$$\lim_{t \to \infty} \frac{\operatorname{ne}_t(x)}{t} = \sup_{\vec{C}} \frac{1}{|V(\vec{C})|} \oint_{\vec{C}} dX_0$$
 (2)

where the supremum runs over all closed directed cycles \vec{C} in G.

Sketch of proof.





Key lemma

Lemma

G = (V, E) a simple graph, $(X_t)_{t \ge 0}$ a 3-color CCA or GHM trajectory. Let $\operatorname{ne}_t(x) = \sum_{s=0}^{t-1} \mathbf{1}(x \text{ is excited at time s})$. Then

$$\operatorname{ne}_t(x) = M_t(x) := \max_{|\vec{P}| \le t} \int_{\vec{W}} dX_0$$

where the maximum runs over all directed walks \vec{W} of length \leq t starting from x.

Tournament expansion

We associate a monotone comparison process called **tournament process** (inspired by a consensus algorithm)

- G = (V, E) a locally finite graph, $rk_t : V \to \mathbb{Z}$ ranking on G at time t
- Transition map:

$$\mathrm{rk}_{t+1}(x) = \max\{\mathrm{rk}_t(y) \mid y \in N(x) \cup \{x\}\}.$$

• Example on P_4 :

- For each site x, its rank is non-decreasing in time
- In fact, the dynamics is determined by

$$\mathrm{rk}_t(x) = \max\{\mathrm{rk}_0(y) \mid d(x,y) \le t\} =: M_t(x)$$

Key idea 1: unfold cyclic colors into linearly ordered ranks

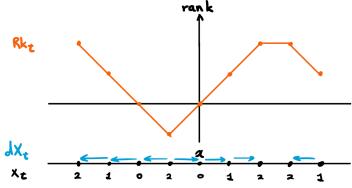
• We would like to view x copies y at time $t \Leftrightarrow \mathtt{rk}_t(y) - \mathtt{rk}_t(x) = 1$

Key idea 1: unfold cyclic colors into linearly ordered ranks

- We would like to view x copies y at time $t \Leftrightarrow \mathtt{rk}_t(y) \mathtt{rk}_t(x) = 1$
- But since x copies y at time $t \Leftrightarrow dX_t(x,y) = 1$, edge configuration dX_t gives **gradient** of ranks along edges

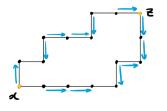
Key idea 1: unfold cyclic colors into linearly ordered ranks

- We would like to view x copies y at time $t \Leftrightarrow \mathtt{rk}_t(y) \mathtt{rk}_t(x) = 1$
- But since x copies y at time $t \Leftrightarrow dX_t(x,y) = 1$, edge configuration dX_t gives **gradient** of ranks along edges



• But what if there are multiple paths from x to z which are not "consistent"?

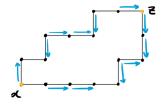
• But what if there are multiple paths from x to z which are not "consistent"?



upper path:
$$7k(2)=2$$

lower path: rk(2)=0

 But what if there are multiple paths from x to z which are not "consistent"?

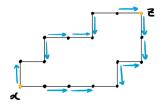


upper path:
$$rk(2)=2$$

lower path: $rk(2)=0$

• A **bold** way to go: declare endpoints of different paths are "different"

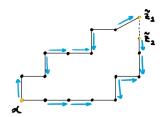
 But what if there are multiple paths from x to z which are not "consistent"?



upper path: rk(2)=2

lower path: rk(2) = 0

• A **bold** way to go: declare endpoints of different paths are "different"



upper path: $rk(\tilde{z}_i) = 2$

lower path: rk(\$\frac{2}{2})=0

Proof of the key Lemma: Tournament expansion

• Universal covering space $\mathcal{T}_x = (\mathcal{V}, \mathcal{E})$ of G = (V, E) based at $x \in V$:

 $\mathcal{V} = \text{set of all non-backtracking walks starting from } x$ identify null walk with x itself;

 \mathcal{E} = given by 1-step extension

Proof of the key Lemma: Tournament expansion

• Universal covering space $\mathcal{T}_x = (\mathcal{V}, \mathcal{E})$ of G = (V, E) based at $x \in V$:

 $\mathcal{V} = \text{set of all non-backtracking walks starting from } x$ identify null walk with x itself;

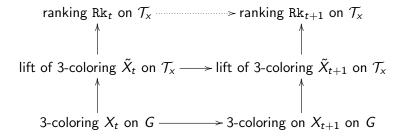
 ${\cal E}~=~$ given by 1-step extension

• Define $\mathrm{Rk}_t(x) = \mathrm{ne}_t(x) = \sum_{s=0}^{t-1} \mathbf{1}_{\{x \text{ excites at time } s\}}$ for all $t \geq 0$; extend to all $\tilde{z} \in \mathcal{V}$ via

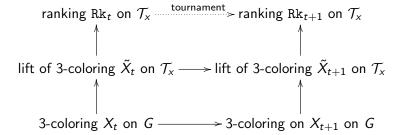
$$\mathrm{Rk}_t(\tilde{z}) := \mathrm{Rk}_t(x) + \int_{\vec{P}} dX_t,$$

where \vec{P} is the unique shortest walk from x to \tilde{z} in \mathcal{T}_x .

A commuting diagram



A commuting diagram



Lemma

G=(V,E) a simple graph, $(X_t)_{t\geq 0}$ a 3-color CCA or GHM trajectory. Let $\operatorname{ne}_t(x)=\sum_{s=0}^{t-1}\mathbf{1}(x \text{ is excited at time s})$. Then

$$\mathtt{ne}_t(x) = M_t(x) := \max_{|\vec{P}| \le t} \int_{\vec{W}} dX_0$$

where the maximum runs over all directed walks \vec{W} of length \leq t starting from x.

Proof of key lemma.

$$\mathtt{ne}_t(x) \stackrel{\mathsf{def}}{=:} \mathtt{Rk}_t(x) \stackrel{\mathit{TE}}{=} \max_{d(x,\tilde{z}) \leq t} \mathtt{Rk}_0(\tilde{z}) \stackrel{\mathsf{def}}{=} \max_{|\vec{W}| < t} \int_{\vec{W}} dX_0$$

Thank you!