Combinatorial and Probabilistic aspects of coupled oscillators

Hanbaek Lyu

The Ohio State University

Ph.D Dissertation

Thesis advisor: David Sivakoff

April 9, 2018

Part I: Combinatorial aspects of coupled oscillators

- [1] H. Lyu, "Global synchronization of pulse-coupled oscillators on trees" SIAM Journal on Applied Dynamical Systems (to appear) arXiv:1604.08381
- [2] H. Lyu, "Synchronization of finite-state pulse-coupled oscillators" Physica D: Nonlinear Phenomena 303 (2015): 28-38. arXiv:1407.1103
- [3] H. Lyu, "Phase transition in firefly cellular automaton on finite trees." arXiv:1610.00837 (2016)

Part II: Probabilistic aspects of coupled oscillators

- [4] J. Gravner, H. Lyu, and D. Sivakoff, "Limiting behavior of 3-color excitable media on arbitrary graphs." Annals of Applied Probability (to appear). arXiv:1610.07320
- [5] H. Lyu and D. Sivakoff, "Persistence of sums of correlated increments and clustering in cellular automata." Stochastic Processes and Applications (to appear). arxiv.org/1706.08117
- [6] H. Lyu and D. Sivakoff, "Synchronization of finite-state pulse-coupled oscillators on \mathbb{Z} ." arXiv.org:1701.00319 (2017)

Part I: Combinatorial aspects of coupled oscillators

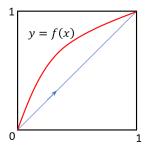


Figure: PRC for an excitatory pulse coupling

A pulse-coupled oscillator evolves on unit circle $S^1 = \mathbb{R}/\mathbb{Z}$ with constant unit speed, fires pulse at phase 1, and adjusts its phase upon receiving pulse from a neighbor.

$$\left\{ egin{aligned} \dot{\phi}_{
u}(t) \equiv 1 & ext{not upon pulse} \ \phi_{
u}(t^+) = f(\phi_{
u}(t)) & ext{upon pulse}, \end{aligned}
ight.$$

- ► The way an oscillator responses to pulse signal is given by the **phase response curve** (PRC).
- ▶ PRC is excitatory $(f(x) \ge x)$, inhibitory $(f(x) \le x)$, and delay-advance, etc.

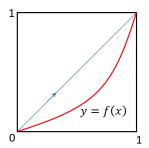


Figure: PRC for an inhibitory pulse coupling

▶ A **pulse-coupled oscillator** evolves on unit circle $S^1 = \mathbb{R}/\mathbb{Z}$ with constant unit speed, fires pulse at phase 1, and adjusts its phase upon receiving pulse from a neighbor.

$$\left\{ egin{aligned} \dot{\phi}_{
u}(t) &\equiv 1 & ext{not upon pulse} \ \phi_{
u}(t^+) &= f(\phi_{
u}(t)) & ext{upon pulse}, \end{aligned}
ight.$$

- The way an oscillator responses to pulse signal is given by the **phase response curve** (PRC).
- ▶ PRC is excitatory $(f(x) \ge x)$, inhibitory $(f(x) \le x)$, and delay-advance, etc.

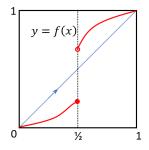


Figure: PRC for a delay-advance pulse coupling

▶ A **pulse-coupled oscillator** evolves on unit circle $S^1 = \mathbb{R}/\mathbb{Z}$ with constant unit speed, fires pulse at phase 1, and adjusts its phase upon receiving pulse from a neighbor.

$$\left\{ egin{aligned} \dot{\phi}_{
u}(t) \equiv 1 & ext{not upon pulse} \ \phi_{
u}(t^+) = f(\phi_{
u}(t)) & ext{upon pulse}, \end{aligned}
ight.$$

- The way an oscillator responses to pulse signal is given by the **phase response curve** (PRC).
- PRC is excitatory $(f(x) \ge x)$, inhibitory $(f(x) \le x)$, and delay-advance, etc.

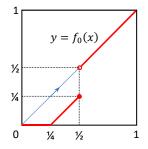


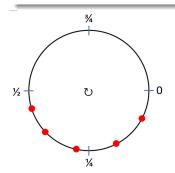
Figure: PRC for the 4-coupling

A pulse-coupled oscillator evolves on unit circle $S^1 = \mathbb{R}/\mathbb{Z}$ with constant unit speed, fires pulse at phase 1, and adjusts its phase upon receiving pulse from a neighbor.

$$\left\{ egin{aligned} \dot{\phi}_{
u}(t) \equiv 1 & ext{not upon pulse} \ \phi_{
u}(t^+) = f(\phi_{
u}(t)) & ext{upon pulse}, \end{aligned}
ight.$$

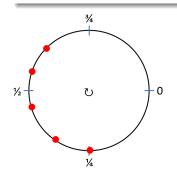
- ► The way an oscillator responses to pulse signal is given by the **phase response curve** (PRC).
- ► The **4-coupling** is the pulse-coupling with the PRC to the left, which extends the 4-color firefly cellular automaton.

Lemma



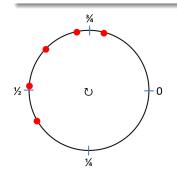
- ▶ The width $\omega(\phi_0)$ of ϕ_0 is the length of the shortest arc in S^1 that covers all initial phases in ϕ_0
- Given $\omega(\phi_0) < 1/2$, any delay-advance pulse coupling contracts the width to zero, i.e., $\omega(\phi_t) \searrow 0$ as $t \to \infty$.

Lemma



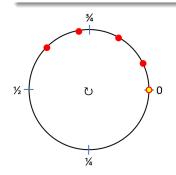
- ▶ The width $\omega(\phi_0)$ of ϕ_0 is the length of the shortest arc in S^1 that covers all initial phases in ϕ_0
- Given $\omega(\phi_0) < 1/2$, any delay-advance pulse coupling contracts the width to zero, i.e., $\omega(\phi_t) \searrow 0$ as $t \to \infty$.

Lemma



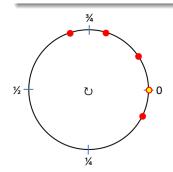
- ▶ The width $\omega(\phi_0)$ of ϕ_0 is the length of the shortest arc in S^1 that covers all initial phases in ϕ_0
- Given $\omega(\phi_0) < 1/2$, any delay-advance pulse coupling contracts the width to zero, i.e., $\omega(\phi_t) \searrow 0$ as $t \to \infty$.

Lemma



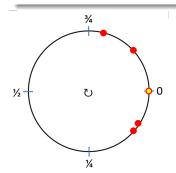
- ▶ The width $\omega(\phi_0)$ of ϕ_0 is the length of the shortest arc in S^1 that covers all initial phases in ϕ_0
- Given $\omega(\phi_0) < 1/2$, any delay-advance pulse coupling contracts the width to zero, i.e., $\omega(\phi_t) \searrow 0$ as $t \to \infty$.

Lemma



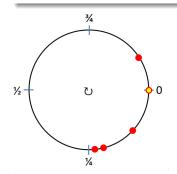
- ▶ The width $\omega(\phi_0)$ of ϕ_0 is the length of the shortest arc in S^1 that covers all initial phases in ϕ_0
- Given $\omega(\phi_0) < 1/2$, any delay-advance pulse coupling contracts the width to zero, i.e., $\omega(\phi_t) \searrow 0$ as $t \to \infty$.

Lemma



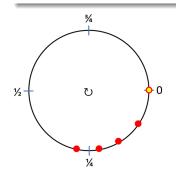
- ▶ The width $\omega(\phi_0)$ of ϕ_0 is the length of the shortest arc in S^1 that covers all initial phases in ϕ_0
- Given $\omega(\phi_0) < 1/2$, any delay-advance pulse coupling contracts the width to zero, i.e., $\omega(\phi_t) \searrow 0$ as $t \to \infty$.

Lemma



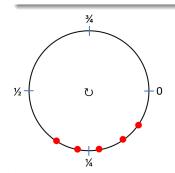
- ▶ The width $\omega(\phi_0)$ of ϕ_0 is the length of the shortest arc in S^1 that covers all initial phases in ϕ_0
- Given $\omega(\phi_0) < 1/2$, any delay-advance pulse coupling contracts the width to zero, i.e., $\omega(\phi_t) \searrow 0$ as $t \to \infty$.

Lemma



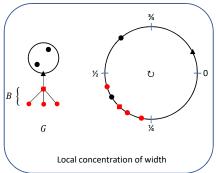
- ▶ The width $\omega(\phi_0)$ of ϕ_0 is the length of the shortest arc in S^1 that covers all initial phases in ϕ_0
- Given $\omega(\phi_0) < 1/2$, any delay-advance pulse coupling contracts the width to zero, i.e., $\omega(\phi_t) \searrow 0$ as $t \to \infty$.

Lemma



- ▶ The width $\omega(\phi_0)$ of ϕ_0 is the length of the shortest arc in S^1 that covers all initial phases in ϕ_0
- Given $\omega(\phi_0) < 1/2$, any delay-advance pulse coupling contracts the width to zero, i.e., $\omega(\phi_t) \searrow 0$ as $t \to \infty$.

Two extensions of the width lemma

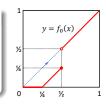


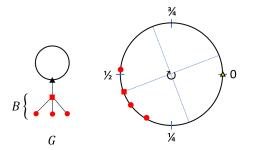
- $\begin{array}{c} \operatorname{mod} 1 \\ \xrightarrow{} \\ \end{array} \begin{array}{c} \\ \times \\ \end{array}$ $\begin{array}{c} \operatorname{Lifting to} \ \mathbb{R}\text{-valued phases} \end{array}$
- Enables induction on size of trees
- ▶ Key idea for Part I

- Give rises to hidden monotonicity
- Will inspire our works in Part II

 $S^1 = \mathbb{R}/\mathbb{Z}$

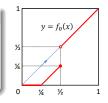
Lemma

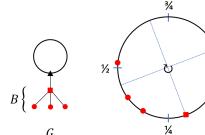




- ► The **branch width** $\omega(\phi_0|_B)$ is the width of the restricted phase configuration $\phi_0|_B$ on B.
- $\omega(\phi_t|_B)$ can only be perturbed by the root \blacktriangle at most once in every 1 second.

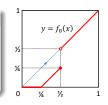
Lemma

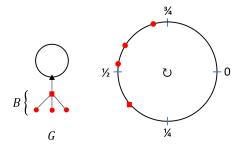




- Original branch width could increase by 1/4
- During the following 1 second, the root ▲ never blinks again

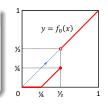
Lemma

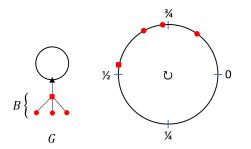




- Original branch width could increase by 1/4
- During the following 1 second, the root ▲ never blinks again
- No phase delay in B until the center blinks

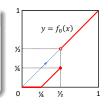
Lemma

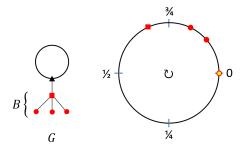




- Original branch width could increase by 1/4
- During the following 1 second, the root ▲ never blinks again
- No phase delay in B until the centerblinks

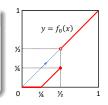
Lemma

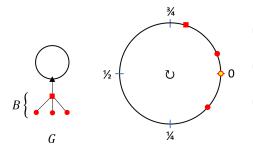




- Original branch width could increase by 1/4
- During the following 1 second, the root ▲ never blinks again
- No phase delay in *B* until the center blinks

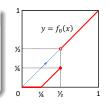
Lemma

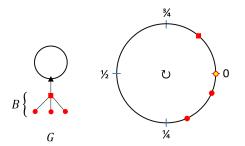




- Original branch width could increase by 1/4
- During the following 1 second, the root ▲ never blinks again
- No phase delay in *B* until the center blinks

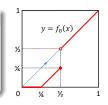
Lemma

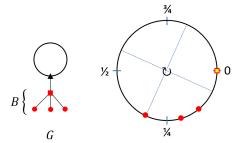




- Original branch width could increase by 1/4
- During the following 1 second, the root ▲ never blinks again
- No phase delay in *B* until the center blinks

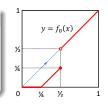
Lemma

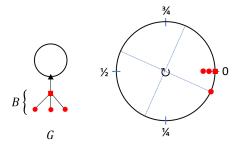




- Original branch width could increase by 1/4
- During the following 1 second, the root ▲ never blinks again
- No phase delay in B until the center
 blinks

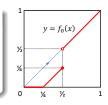
Lemma

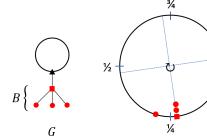




- Original branch width could increase by 1/4
- During the following 1 second, the root ▲ never blinks again
- No phase delay in B until the center
 blinks at time t
- $\omega(\phi_{t+}|_B) \leq \omega(\phi_0|_B)$

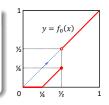
Lemma

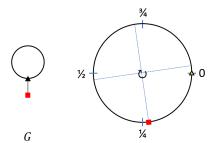




- During this cyle, the leaves •'s in B does not delay the center
- This cycle repeats thereafter, so we can omit the leaves in B without affecting the dynamics on the rest

Lemma





- During this cyle, the leaves •'s in B does not delay the center
- This cycle repeats thereafter, so we can omit the leaves in B without affecting the dynamics on the rest

The 4-coupling on trees

Theorem (L. 2017)

Let T = (V, E) be a finite tree with diameter d. Consider the 4-coupling.

- (i) If T has maximum degree ≤ 3, arbitrary phase configuration on T synchronizes by time 51d.
- (ii) If T has maximum degree \geq 4, then there exists a non-synchronizing phase configuration on T.

The 4-coupling on trees

Theorem (L. 2017)

Let T = (V, E) be a finite tree with diameter d. Consider the 4-coupling.

- (i) If T has maximum degree ≤ 3, arbitrary phase configuration on T synchronizes by time 51d.
- (ii) If T has maximum degree ≥ 4 , then there exists a non-synchronizing phase configuration on T.

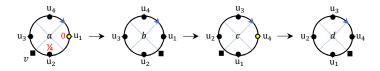
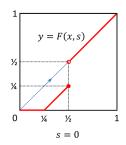
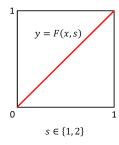


Figure: An example of 4-coupled phase dynamics on a star with center $v = \blacksquare$ and leaves $= \bullet$. In every 1/4 second, one of the leaves blink and pulls the center by 1/4 in phase, resulting in a non-synchronizing orbit.

The adaptive 4-coupling





- In order to overcome the degree constraint, introduce an auxiliary state variable $\sigma_v(t) \in \{0, 1, 2\}$ for each node $v \in V$.
- Whenever $\sigma_v = 0$, v uses the 4-coupling PRC (top).
- ▶ Whenever $\sigma_v \in \{1, 2\}$, v ignores all input pulses (bottom)
- Dynamics of this auxiliary variable is carefully coupled with the phase dynamics.

The adaptive 4-coupling on trees

Theorem (L. 2017)

Let T = (V, E) be a finite tree with diameter d. Then arbitrary initial joint configuration on T synchronizes under the adaptive 4-coupling by time 83d.

Lemma

Let T=(V,E) be a finite tree with maximum degree Δ and let $(\Sigma_{\bullet}(t))_{t\geq 0}$ be a joint trajectory on T. Let B be any terminal branch in T. Then $\omega(\phi_{t_1^+}|_B)<1/4$ for some $t_1<157$.

The adaptive 4-coupling on trees

Theorem (L. 2017)

Let T = (V, E) be a finite tree with diameter d. Then arbitrary initial joint configuration on T synchronizes under the adaptive 4-coupling by time 83d.

Corollary (L. 2017)

Consider an autonomous distributed system on an arbitrary finite simple graph G=(V,E) with diameter d and maximum degree Δ . Then $\mathcal{A}=A4C/M+S$ panning Tree has the following properties:

- (i) A can be implemented with $O(\log M\Delta)$ memory per node.
- (ii) Let τ_G be the worst case running time of \mathcal{A} on G. Then $\mathbb{E}[\tau_G] = O(\epsilon M|V| + (d^5 + \Delta^2)\log|V|)$.

Simulations: A4C on a lattice and its spanning tree

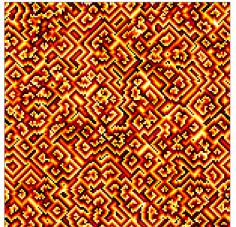


Figure: A4C on square lattice (with Moore neighborhood, deg 8)

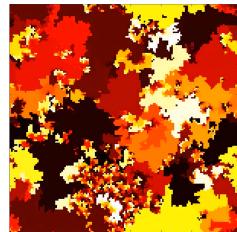
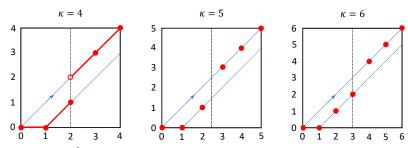


Figure: A4C on a uniform spanning tree of the lattice on the left

The κ -color Firefly Cellular Automaton (FCA)

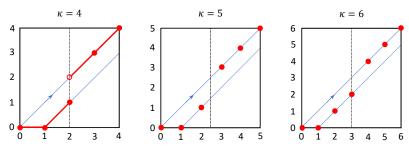


- ▶ Discretize $S^1 = \mathbb{R}/\mathbb{Z}$ into $\mathbb{Z}_{\kappa} = \mathbb{Z}/\kappa\mathbb{Z}$, so now a κ -coloring $X_t : V \to \mathbb{Z}_{\kappa}$ updates in discrete time.
- ▶ The 4-coupling induces the following update rule for $\kappa = 4$:

$$X_{t+1}(v) = egin{cases} X_t(v) & ext{if } X_t(v) \in \{1,2\} ext{ and } \ |\{u \in extstyle N(v): X_t(u) = 0\}| \geq 1 \ X_t(v) + 1 ext{ (mod 4)} & ext{otherwise} \end{cases}$$

• Say $v \in V$ blinks at time t if $X_t(v) = 0$.

The κ -color Firefly Cellular Automaton (FCA)

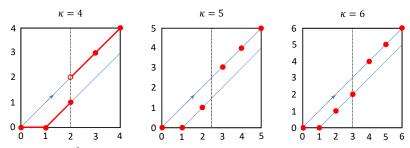


- ▶ Discretize $S^1 = \mathbb{R}/\mathbb{Z}$ into $\mathbb{Z}_{\kappa} = \mathbb{Z}/\kappa\mathbb{Z}$, so now a κ -coloring $X_t : V \to \mathbb{Z}_{\kappa}$ updates in discrete time.
- ▶ Similar PRC induces the following update rule for $\kappa = 5$:

$$X_{t+1}(v) = egin{cases} X_t(v) & ext{if } X_t(v) \in \{1,2\} ext{ and } \ & |\{u \in extstyle N(v): X_t(u) = 0\}| \geq 1 \ X_t(v) + 1 ext{ (mod 5)} & ext{otherwise} \end{cases}$$

• Say $v \in V$ blinks at time t if $X_t(v) = 0$.

The κ -color Firefly Cellular Automaton (FCA)

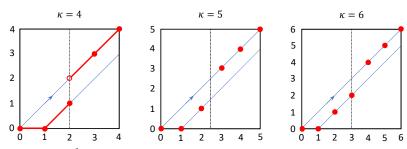


- ▶ Discretize $S^1 = \mathbb{R}/\mathbb{Z}$ into $\mathbb{Z}_{\kappa} = \mathbb{Z}/\kappa\mathbb{Z}$, so now a κ -coloring $X_t : V \to \mathbb{Z}_{\kappa}$ updates in discrete time.
- Similar PRC induces the following update rule for $\kappa = 6$:

$$X_{t+1}(v) = egin{cases} X_t(v) & ext{if } X_t(v) \in \{1,2,3\} ext{ and } \ |\{u \in \mathit{N}(v) : X_t(u) = 0\}| \geq 1 \ X_t(v) + 1 ext{ (mod 6)} & ext{otherwise} \end{cases}$$

▶ Say $v \in V$ blinks at time t if $X_t(v) = 0$.

The κ -color Firefly Cellular Automaton (FCA)



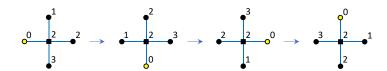
- ▶ Discretize $S^1 = \mathbb{R}/\mathbb{Z}$ into $\mathbb{Z}_{\kappa} = \mathbb{Z}/\kappa\mathbb{Z}$, so now a κ -coloring $X_t : V \to \mathbb{Z}_{\kappa}$ updates in discrete time.
- ▶ In general, the κ -color FCA $(X_t)_{t\geq 0}$ evolves via

$$X_{t+1}(v) = egin{cases} X_t(v) & ext{if } 1 \leq X_t(v) \leq \kappa/2 ext{ and} \ & |\{u \in extstyle N(v) : X_t(u) = 0\}| \geq 1 \ X_t(v) + 1 ext{ (mod } \kappa) & ext{otherwise} \end{cases}$$

▶ Say $v \in V$ blinks at time t if $X_t(v) = 0$.

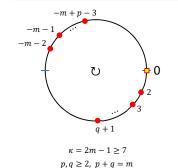
Theorem (L. 2015, 2017)

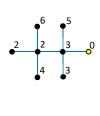
- (i) If $\kappa \in \{3,4,5,6\}$ and T = (V,E) is any finite tree, then every κ -coloring on T synchronizes iff T has maximum degree $< \kappa$.
- (ii) If $\kappa \ge 7$, then there exists a finite tree T = (V, E) with maximum degree $\le \kappa/2 + 1$ and a non-synchronizing κ -coloring on T.



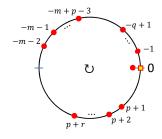
Theorem (L. 2015, 2017)

- (i) If $\kappa \in \{3,4,5,6\}$ and T = (V,E) is any finite tree, then every κ -coloring on T synchronizes iff T has maximum degree $< \kappa$.
- (ii) If $\kappa \geq 7$, then there exists a finite tree T = (V, E) with maximum degree $<\kappa/2+1$ and a non-synchronizing κ -coloring on T.





 $\kappa = 8$



$$\kappa = 2m \ge 10$$

$$p, q, r \ge 2, \ p + q + r = m + 1$$

Theorem (L. 2015, 2017)

(i) If $\kappa \in \{3,4,5,6\}$ and T = (V,E) is any finite tree, then every κ -coloring on T synchronizes if T has maximum degree $< \kappa$.

Theorem (L. 2015, 2017)

(i) If $\kappa \in \{3,4,5,6\}$ and T = (V,E) is any finite tree, then every κ -coloring on T synchronizes if T has maximum degree $< \kappa$.

Theorem

 $\kappa \in \{3,4,5,6\}$, T = (V,E) a finite tree, $X_0 : V \to \mathbb{Z}_{\kappa}$. Then $(X_t)_{t \ge 0}$ synchronizes iff every vertex in T blinks infinitely often in the dynamic.

Theorem (L. 2015, 2017)

(i) If $\kappa \in \{3,4,5,6\}$ and T = (V,E) is any finite tree, then every κ -coloring on T synchronizes if T has maximum degree $< \kappa$.

Theorem

 $\kappa \in \{3,4,5,6\}$, T = (V,E) a finite tree, $X_0 : V \to \mathbb{Z}_{\kappa}$. Then $(X_t)_{t \ge 0}$ synchronizes iff every vertex in T blinks infinitely often in the dynamic.

Lemma

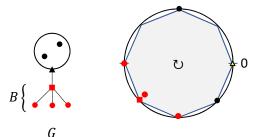
G=(V,E), $X_0:V\to\mathbb{Z}_\kappa$, $\kappa\geq 3$, $v\in V$, and $deg(v)<\kappa$. Then v blinks infinitely often in $(X_t)_{t\geq 0}$.

Theorem

 $\kappa \in \{3,4,5,6\}$, T = (V,E) a finite tree, $X_0 : V \to \mathbb{Z}_{\kappa}$. Then $(X_t)_{t \ge 0}$ synchronizes iff every vertex in T blinks infinitely often in the dynamic.

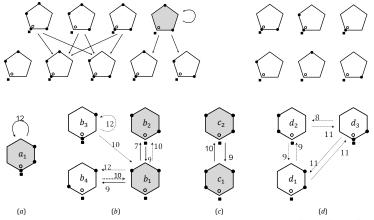
Lemma (Local concentration for FCA)

G=(V,E), $B\subseteq G$ a branch, $X_0:V\to\mathbb{Z}_\kappa$, $\kappa\geq 3$. If $\omega(X_0|_B)<\kappa/2-1$, then the leaves in B become irrelevant of the dynamics after some finite time.



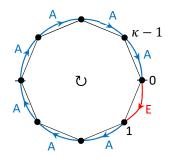
Lemma (Local concentration for FCA)

G=(V,E), $B\subseteq G$ a branch, $X_0:V\to\mathbb{Z}_\kappa$, $\kappa\geq 3$. If $\omega(X_0|_B)<\kappa/2-1$, then the leaves in B become irrelevant of the dynamics after some finite time.



Part II: Probabilistic aspects of coupled oscillators

The κ -color Greenberg-Hastings Model (GHM)

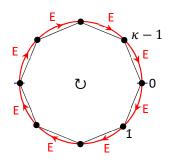


- Proposed by Greenberg and Hastings in 1978 to model neural networks in a discrete setting
- ► Transition map:

$$\begin{cases} 0\mapsto 1 & \text{if has nb of color 1} \\ 0\mapsto 0 & \text{if has no nb of color 1} \\ i\mapsto i+1\,(\text{mod }\kappa) & \text{if } i\geq 1 \end{cases}$$

- ▶ Color increment $0 \mapsto 1$ is called **excitation**.
- ► Interpretation: color 0: rested, color 1: excited, rest: refractory.

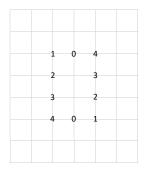
The κ -color Cyclic Cellular Automaton (CCA)



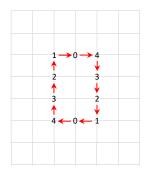
- Proposed by Fisch in 1990 as a discrete analogue of the cyclic particle system introduced by Bramson and Griffeath in 1989.
- Transition map:

$$\begin{cases} i\mapsto i+1 \, (\text{mod }\kappa) & \text{if has nb} \\ & \text{of color } i+1 \\ i\mapsto i & \text{otherwise} \end{cases}$$

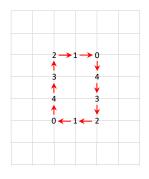
- ▶ Color increment $i \mapsto i + 1 \pmod{\kappa}$ is called **excitation**.
- ► Interpretation: color i + 1 "eats" color i; rock-paper-scissor



- Suppose CCA and colors increment by 1 along a closed walk
- ▶ In 1 iteration, all sites on the walk increment by 1
- ▶ Colors on the walk still increase by 1
- ► This repeats over and over



- Suppose CCA and colors increment by 1 along a closed walk
- lacktriangle In 1 iteration, all sites on the walk increment by 1
- Colors on the walk still increase by 1
- This repeats over and over



- Suppose CCA and colors increment by 1 along a closed walk
- lacktriangle In 1 iteration, all sites on the walk increment by 1
- Colors on the walk still increase by 1
- This repeats over and over

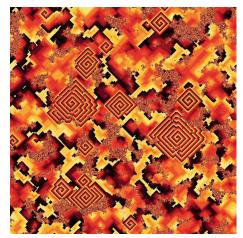


Figure: 16-color CCA on sqaure lattice (Image credit: David Griffeath)

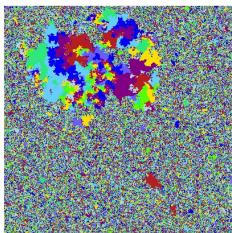
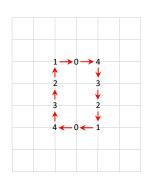
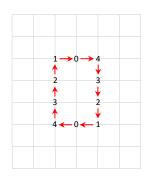


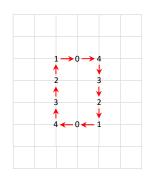
Figure: 9-color CCA on a uniform spanning tee of sqaure lattice



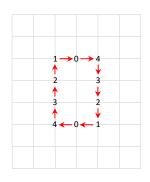
Q: How can we characterize a 'defect'? Is it invariant under dynamics? Does it have to be planted initially or could it spontaneously emerge later on?



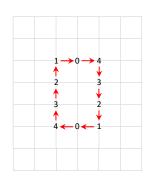
- Q: How can we characterize a 'defect'? Is it invariant under dynamics? Does it have to be planted initially or could it spontaneously emerge later on?
- Q: If we don't have any defect, do we have fixation?



- Q: How can we characterize a 'defect'? Is it invariant under dynamics? Does it have to be planted initially or could it spontaneously emerge later on?
- Q: If we don't have any defect, do we have fixation?
- Q: If we have a defect, what happens to nearby sites? Can we say something about the rate of color change?



- Q: How can we characterize a 'defect'? Is it invariant under dynamics? Does it have to be planted initially or could it spontaneously emerge later on?
- Q: If we don't have any defect, do we have fixation?
- Q: If we have a defect, what happens to nearby sites? Can we say something about the rate of color change?
- A : We answer these questions completely for $\kappa = 3$.



Q: How can we characterize a 'defect'? Is it invariant under dynamics? Does it have to be planted initially or could it spontaneously emerge later on?

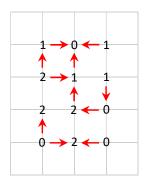
Q: If we don't have any defect, do we have fixation?

Q: If we have a defect, what happens to nearby sites? Can we say something about the rate of color change?

A : We answer these questions completely for $\kappa = 3$.

c.f. Many interesting open problems for $\kappa \geq 4$.

Induced vector field on the edges and path integral



- Given G = (V, E) and a 3-color CCA trajectory $(X_t)_{t \geq 0}$
- ▶ Define **edge configuration** $dX_t : E \rightarrow \{-1, 0, 1\}$ by

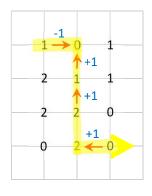
$$dX_t(x,y) = X_t(x) - X_t(y) \text{ (mod 3)}.$$

For each directed walk $\vec{W} = (w_1, x_2, \dots, w_{k+1})$, define **path integral**

$$\int_{\vec{W}} dX_t = \sum_{i=1}^k dX_t(w_i, x_{i+1}).$$

Say dX_t is conservative (no defect) if every contour integral is zero.

Induced vector field on the edges and path integral



- Given G = (V, E) and a 3-color CCA trajectory $(X_t)_{t \geq 0}$
- ▶ Define **edge configuration** $dX_t : E \rightarrow \{-1, 0, 1\}$ by

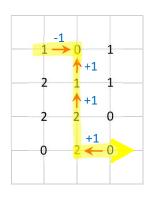
$$dX_t(x,y) = X_t(x) - X_t(y) \text{ (mod 3)}.$$

For each directed walk $\vec{W} = (w_1, x_2, \dots, w_{k+1})$, define **path integral**

$$\int_{\vec{W}} dX_t = \sum_{i=1}^k dX_t(w_i, x_{i+1}).$$

Say dX_t is conservative (no defect) if every contour integral is zero.

Induced vector field on the edges and path integral



- Given G = (V, E) and a 3-color CCA trajectory $(X_t)_{t \geq 0}$
- ▶ Define **edge configuration** $dX_t : E \rightarrow \{-1, 0, 1\}$ by

$$dX_t(x,y) = X_t(x) - X_t(y) \text{ (mod 3)}.$$

For each directed walk $\vec{W} = (w_1, x_2, \cdots, w_{k+1})$, define **path integral**

$$\int_{\vec{W}} dX_t = \sum_{i=1}^k dX_t(w_i, x_{i+1}).$$

Say dX_t is conservative (no defect) if every contour integral is zero.

Theorem (Gravner, L., and Sivakoff 2016)

 X_t synchronizes if and only if dX_0 is conservative.

Key lemma

Lemma

G = (V, E) a simple graph, $(X_t)_{t \ge 0}$ a 3-color CCA (or GHM) trajectory. Let $ne_t(x) = \sum_{s=0}^{t-1} \mathbf{1}(x \text{ is excited at time s})$. Then

$$ne_t(x) = \max_{|\vec{P}| \le t} \int_{\vec{P}} dX_0$$

where the maximum runs over all directed walks \vec{P} of length $\leq t$ starting from x.

On infinite trees

- Let $\Gamma = (V, E)$ be an infinite tree with root 0, X_0 a random 3-coloring on V chosen uniformly at random.
- ▶ Define the associated Γ -indexed walk $\{S_{\sigma}\}_{{\sigma} \in V}$ by

$$S_{\sigma}=\int_{\vec{P}(0,\sigma)}dX_{0}.$$

▶ Define **activity** $\alpha(0) := \limsup_{t \to \infty} \frac{\operatorname{ne}_t(0)}{t}$. By the key lemma,

$$\alpha(0) = \limsup_{t \to \infty} \frac{1}{t} \max_{|\vec{P}| \le t} \int_{\vec{P}} dX_0 = \limsup_{t \to \infty} \frac{1}{t} \max_{|\sigma| \le t} S_{\sigma}$$

▶ This equals to the **cloud speed** v_c of the Γ-indexed walk $\{S_\sigma\}_{\sigma \in V}$, where

$$v_c = \limsup_{t \to \infty} \frac{1}{t} \max_{|\sigma| = t} S_{\sigma}$$

- For regular enough Γ, the cloud speed v_c of a Γ-indexed walk $(S_\sigma)_{\sigma \in V}$ is determined by two quantities:
 - (volume entropy) $h(\Gamma) = \limsup_{n \to \infty} \frac{1}{n} \log A_n,$

where A_n is the number of nodes in Γ at level n

(large deviations rate)

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbb{P}(S_n\geq vn)=-\Lambda^*(v).$$

 $\Lambda^*(u)$ is strictly increasing and continuous on (0,1).

- For regular enough Γ, the cloud speed v_c of a Γ-indexed walk $(S_\sigma)_{\sigma \in V}$ is determined by two quantities:
 - (volume entropy) $h(\Gamma) = \limsup_{n \to \infty} \frac{1}{n} \log A_n,$

where A_n is the number of nodes in Γ at level n

(large deviations rate)

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbb{P}(S_n\geq vn)=-\Lambda^*(v).$$

 $\Lambda^*(u)$ is strictly increasing and continuous on (0,1).

Theorem (Benjamini and Peres 1994)

$$\Lambda^*(v_c) = h(\Gamma).$$

- For regular enough Γ, the cloud speed v_c of a Γ-indexed walk $(S_\sigma)_{\sigma \in V}$ is determined by two quantities:
 - $h(\Gamma) = \limsup_{n \to \infty} \frac{1}{n} \log A_n,$ (volume entropy)

where A_n is the number of nodes in Γ at level n

(large deviations rate)

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbb{P}(S_n\geq vn)=-\Lambda^*(v).$$

 $\Lambda^*(u)$ is strictly increasing and continuous on (0,1).

Theorem (Benjamini and Peres 1994)

$$\Lambda^*(v_c)=\mathtt{h}(\Gamma).$$

Intuition:

- ▶ If v is large so that $\Lambda^*(v) > h(\Gamma)$, then $\mathbb{P}(S_n \geq vn)$ decays at a faster exponential rate than volume growth
- If v is small so that $\Lambda^*(v) < h(\Gamma)$, then we have enough volume growth so $\mathbb{P}(S_n \geq nv)$ constantly occurs along an infinite ray

Let $\Gamma=(V,E)$ be an infinite rooted tree and $(X_t)_{t\geq 0}$ the random 3-color CCA or GHM trajectory on Γ . Then

- (i) The activity $\alpha(x)$ of any $x \in V$ equals to the cloud speed v_c of Γ -indexed random walk $\{S_{\sigma}\}_{{\sigma} \in V}$.
- (ii) If Γ is regular enough (i.e., $\log \operatorname{br}(\Gamma) = \operatorname{h}(\Gamma)$), then $\Lambda^*(v_c) = \operatorname{h}(\Gamma)$.

Let $\Gamma=(V,E)$ be an infinite rooted tree and $(X_t)_{t\geq 0}$ the random 3-color CCA or GHM trajectory on Γ . Then

- (i) The activity $\alpha(x)$ of any $x \in V$ equals to the cloud speed v_c of Γ -indexed random walk $\{S_{\sigma}\}_{{\sigma} \in V}$.
- (ii) If Γ is regular enough (i.e., $\log \operatorname{br}(\Gamma) = h(\Gamma)$), then $\Lambda^*(v_c) = h(\Gamma)$.
 - We actually show a general version of (ii) in the case when the edge increments are Markovian and Γ has leaves.

Let $\Gamma=(V,E)$ be an infinite rooted tree and $(X_t)_{t\geq 0}$ the random 3-color CCA or GHM trajectory on Γ . Then

- (i) The activity $\alpha(x)$ of any $x \in V$ equals to the cloud speed v_c of Γ -indexed random walk $\{S_{\sigma}\}_{{\sigma} \in V}$.
- (ii) If Γ is regular enough (i.e., $\log \operatorname{br}(\Gamma) = \operatorname{h}(\Gamma)$), then $\Lambda^*(v_c) = \operatorname{h}(\Gamma)$.
 - We actually show a general version of (ii) in the case when the edge increments are Markovian and Γ has leaves.
 - ▶ In case Γ has leaves, v_c is not determined by $h(\Gamma)$, since leaves can contribute to $h(\Gamma)$ but not much to v_c .

Let $\Gamma=(V,E)$ be an infinite rooted tree and $(X_t)_{t\geq 0}$ the random 3-color CCA or GHM trajectory on Γ . Then

- (i) The activity $\alpha(x)$ of any $x \in V$ equals to the cloud speed v_c of Γ -indexed random walk $\{S_\sigma\}_{\sigma \in V}$.
- (ii) If Γ is regular enough (i.e., $\log \operatorname{br}(\Gamma) = \operatorname{h}(\Gamma)$), then $\Lambda^*(v_c) = \operatorname{h}(\Gamma)$.
 - We actually show a general version of (ii) in the case when the edge increments are Markovian and Γ has leaves.
 - ▶ In case Γ has leaves, v_c is not determined by $h(\Gamma)$, since leaves can contribute to $h(\Gamma)$ but not much to v_c .
 - ► The **branching number** br(Γ) of Γ is defined by

$$\mathrm{br}(\Gamma) = \inf \left\{ \lambda > 0 \, \bigg| \, \inf_{\Pi} \sum_{\sigma \in \Pi} \lambda^{-|\sigma|} = 0 \right\},$$

where the infimum runs over all **cutset** $\Pi \subset V$, a minimal subset of nodes s.t. $\Gamma - \Pi$ has no infinite ray. (Note: $\operatorname{br}(\Gamma) = d$ if Γ is d-ary tree)

$$\Lambda^*(v_c) = h(\Gamma).$$

Sketch of proof for "≤"

$$\Lambda^*(v_c) = h(\Gamma).$$

Sketch of proof for "≤"

 $\sum_{n\geq 1}\mathbb{P}\left[S_{\sigma}\geq nv \text{ for some } |\sigma|=n\right]\leq \sum_{n\geq 1}\sum_{|\sigma|=n}\mathbb{P}(S_{\sigma}\geq nv)$

Theorem

$$\Lambda^*(v_c)=h(\Gamma).$$

Sketch of proof for "≤"

 $\sum_{n\geq 1} \mathbb{P}\left[S_{\sigma} \geq nv \text{ for some } |\sigma| = n\right] \leq \sum_{n\geq 1} \sum_{|\sigma| = n} \mathbb{P}(S_{\sigma} \geq nv)$

$$\sum_{n\geq 1} \sum_{|\sigma|=n} \mathbb{P}(S_{\sigma} \geq nv) = \sum_{n\geq 1} A_n \mathbb{P}(S_n \geq nv)$$

$$= \sum_{n\geq 1} \exp\left[\log A_n \mathbb{P}(S_n \geq nv)\right]$$

$$= \sum_{n\geq 1} \exp\left[n\left(\frac{1}{n}\log A_n + \frac{1}{n}\log \mathbb{P}(S_n \geq nv)\right)\right].$$

$$\Lambda^*(v_c)=h(\Gamma).$$

Sketch of proof for "≤"

 $\sum_{n\geq 1}\mathbb{P}\left[S_{\sigma}\geq nv \text{ for some } |\sigma|=n\right]\leq \sum_{n\geq 1}\sum_{|\sigma|=n}\mathbb{P}(S_{\sigma}\geq nv)$

$$\sum_{n\geq 1} \sum_{|\sigma|=n} \mathbb{P}(S_{\sigma} \geq nv) = \sum_{n\geq 1} A_n \mathbb{P}(S_n \geq nv)$$

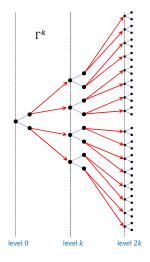
$$= \sum_{n\geq 1} \exp\left[\log A_n \mathbb{P}(S_n \geq nv)\right]$$

$$= \sum_{n\geq 1} \exp\left[n\left(\frac{1}{n}\log A_n + \frac{1}{n}\log \mathbb{P}(S_n \geq nv)\right)\right].$$

► Thus if $h(\Gamma) < \Lambda^*(v)$, the left hand side is summable, so by Borel-Cantelli lemma we get $v_c < v$. This shows $\Lambda^*(v_c) \le h(\Gamma)$.

$$\Lambda^*(v_c) = h(\Gamma).$$

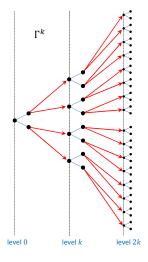
Sketch of proof for ">" (Idea due to Lyons and Pemantle 1992)



► Fix v > 0 s.t. $\Lambda^*(v) < h(\Gamma)$. WTS $v \le v_c$ so that $\Lambda^*(v) \le \Lambda^*(v_c)$.

$$\Lambda^*(\nu_c)=h(\Gamma).$$

Sketch of proof for "≥" (Idea due to Lyons and Pemantle 1992)



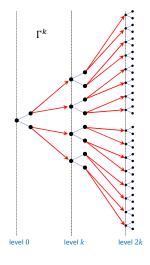
- Fix v > 0 s.t. $\Lambda^*(v) < h(\Gamma)$. WTS $v \le v_c$ so that $\Lambda^*(v) \le \Lambda^*(v_c)$.
- ▶ Choose $0 < \epsilon < h(\Gamma) \Lambda^*(v)$ and choose large k s.t.

$$q_k := \mathbb{P}\left[S_{k-1} \ge (k-1)v\right] > e^{-(\Lambda^*(v)+\epsilon)k}$$

 $> e^{-h(\Gamma)k}$

$$\Lambda^*(v_c) = h(\Gamma).$$

Sketch of proof for "≥" (Idea due to Lyons and Pemantle 1992)



- Fix v > 0 s.t. $\Lambda^*(v) < h(\Gamma)$. WTS $v \le v_c$ so that $\Lambda^*(v) \le \Lambda^*(v_c)$.
- ▶ Choose $0 < \epsilon < h(\Gamma) \Lambda^*(v)$ and choose large k s.t.

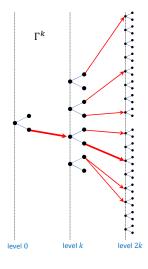
$$q_k := \mathbb{P}\left[S_{k-1} \ge (k-1)v\right] > e^{-(\Lambda^*(v)+\epsilon)k}$$

 $> e^{-h(\Gamma)k}$

▶ Delete each path \rightarrow in Γ^k if $S_{k-1} < (k-1)v$ along the path (occurs w/ prob. $1 - q_k$ indep.).

$$\Lambda^*(v_c) = h(\Gamma).$$

Sketch of proof for "≥" (Idea due to Lyons and Pemantle 1992)



- ► Fix v > 0 s.t. $\Lambda^*(v) < h(\Gamma)$. WTS $v \le v_c$ so that $\Lambda^*(v) \le \Lambda^*(v_c)$.
- ▶ Choose $0 < \epsilon < h(\Gamma) \Lambda^*(v)$ and choose large k s.t.

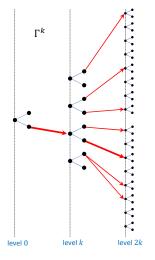
$$q_k := \mathbb{P}\left[S_{k-1} \ge (k-1)v\right] > e^{-(\Lambda^*(v)+\epsilon)k}$$

 $> e^{-h(\Gamma)k}$

▶ Delete each path \rightarrow in Γ^k if $S_{k-1} < (k-1)v$ along the path (occurs w/ prob. $1 - q_k$ indep.).

$$\Lambda^*(v_c) = h(\Gamma).$$

Sketch of proof for "≥" (Idea due to Lyons and Pemantle 1992)



- ► Fix v > 0 s.t. $\Lambda^*(v) < h(\Gamma)$. WTS $v \le v_c$ so that $\Lambda^*(v) \le \Lambda^*(v_c)$.
- ▶ Choose $0 < \epsilon < h(\Gamma) \Lambda^*(v)$ and choose large k s.t.

$$q_k := \mathbb{P}\left[S_{k-1} \ge (k-1)v\right] > e^{-(\Lambda^*(v)+\epsilon)k}$$

 $> e^{-h(\Gamma)k}$

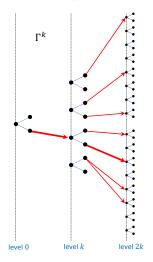
- ▶ Delete each path \rightarrow in Γ^k if $S_{k-1} < (k-1)v$ along the path (occurs w/ prob. $1 q_k$ indep.).
- If $\log br(\Gamma) = h(\Gamma)$,

$$q_k > e^{-\mathrm{h}(\Gamma)k} = 1/\mathrm{br}(\Gamma)^k = 1/\mathrm{br}(\Gamma^k),$$

so an infinite ray γ percolates after deletion.

$$\Lambda^*(v_c)=h(\Gamma).$$

Sketch of proof for "≥" (Idea due to Lyons and Pemantle 1992)



- Fix v > 0 s.t. $\Lambda^*(v) < h(\Gamma)$. WTS $v \le v_c$ so that $\Lambda^*(v) \le \Lambda^*(v_c)$.
- ▶ Choose $0 < \epsilon < h(\Gamma) \Lambda^*(v)$ and choose large k s.t.

$$q_k := \mathbb{P}\left[S_{k-1} \ge (k-1)v\right] > e^{-(\Lambda^*(v)+\epsilon)k}$$

 $> e^{-h(\Gamma)k}$

- ▶ Delete each path \rightarrow in Γ^k if $S_{k-1} < (k-1)v$ along the path (occurs w/ prob. $1 q_k$ indep.).
- If $\log br(\Gamma) = h(\Gamma)$,

$$q_k > e^{-h(\Gamma)k} = 1/br(\Gamma)^k = 1/br(\Gamma^k),$$

so an infinite ray $\boldsymbol{\gamma}$ percolates after deletion.

• On γ , $\liminf_{n \to \infty} S_n/n \ge v$, so $v < v_c$.

Key lemma

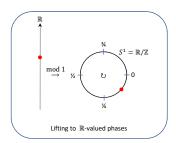
Lemma

G = (V, E) a simple graph, $(X_t)_{t \ge 0}$ a 3-color CCA or GHM trajectory. Let $\operatorname{ne}_t(x) = \sum_{s=0}^{t-1} \mathbf{1}(x \text{ is excited at time s})$. Then

$$ne_t(x) = \max_{|\vec{P}| \le t} \int_{\vec{P}} dX_0$$

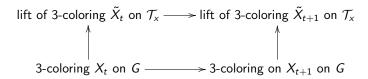
where the maximum runs over all directed walks \vec{P} of length $\leq t$ starting from x.

Intuition:



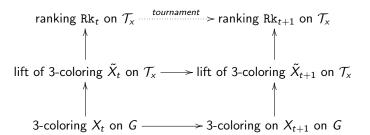
Lifting dynamics to the universal cover

- ▶ Universal cover of G = (V, E) based at $x \in V$ is a tree $\mathcal{T}_x = (\mathcal{V}, \mathcal{E})$:
 - \triangleright V=set of all directed non-backtracking walks starting from x
 - $ightharpoonup \mathcal{E}$ is given by 1-step extension

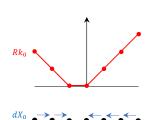


Lifting dynamics to the universal cover

- ▶ Universal cover of G = (V, E) based at $x \in V$ is a tree $T_x = (V, E)$:
 - \triangleright V=set of all directed non-backtracking walks starting from x
 - $ightharpoonup \mathcal{E}$ is given by 1-step extension
- ▶ Universal cover of \mathbb{Z}_3 is \mathbb{Z}
- ▶ Define $\mathrm{Rk}_t : \mathcal{V} \to \mathbb{Z}$: $\mathrm{Rk}_t(x) = \mathrm{ne}_t(x)$ for all $t \geq 0$; extend to all $\vec{P} \in \mathcal{V}$ via $\mathrm{Rk}_t(\vec{P}) := \mathrm{Rk}_t(x) + \int_{\vec{P}} dX_t$.



The lifted process $(Rk_t)_{t>0}$ is called the **tournament process**



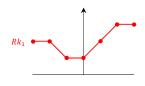
- ▶ G = (V, E) a locally finite graph, $Rk_t : V \to \mathbb{Z}$ ranking on G at time t
- ► Transition map: "copy local max"

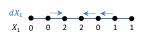
$$Rk_{t+1}(x) = max\{Rk_t(y) | d(x, y) \le 1\}$$

► The dynamics is determined by

$$\mathtt{rk}_t(x) = \max\{\mathtt{rk}_0(y) \mid d(x,y) \le t\}$$

The lifted process $(Rk_t)_{t>0}$ is called the **tournament process**





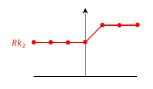
- ▶ G = (V, E) a locally finite graph, $Rk_t : V \to \mathbb{Z}$ ranking on G at time t
- ► Transition map: "copy local max"

$$\mathtt{Rk}_{t+1}(x) = \max\{\mathtt{Rk}_t(y) \,|\, d(x,y) \leq 1\}$$

► The dynamics is determined by

$$\mathtt{rk}_t(x) = \max\{\mathtt{rk}_0(y) \mid d(x,y) \le t\}$$

The lifted process $(Rk_t)_{t\geq 0}$ is called the **tournament process**



 X_2 0 0 0 0 1 1 1

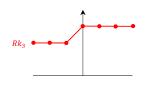
- ▶ G = (V, E) a locally finite graph, $Rk_t : V \to \mathbb{Z}$ ranking on G at time t
- ► Transition map: "copy local max"

$$\mathtt{Rk}_{t+1}(x) = \max\{\mathtt{Rk}_t(y) \,|\, d(x,y) \leq 1\}$$

▶ The dynamics is determined by

$$\mathtt{rk}_t(x) = \max\{\mathtt{rk}_0(y) \mid d(x,y) \le t\}$$

The lifted process $(Rk_t)_{t\geq 0}$ is called the **tournament process**



- ▶ G = (V, E) a locally finite graph, $Rk_t : V \to \mathbb{Z}$ ranking on G at time t
- ► Transition map: "copy local max"

$$\mathtt{Rk}_{t+1}(x) = \max\{\mathtt{Rk}_t(y) \,|\, d(x,y) \leq 1\}$$

▶ The dynamics is determined by

$$\mathtt{rk}_t(x) = \max\{\mathtt{rk}_0(y) \mid d(x,y) \le t\}$$

Lemma

G = (V, E) a simple graph, $(X_t)_{t \geq 0}$ a 3-color CCA or GHM trajectory. Let $\operatorname{ne}_t(x) = \sum_{s=0}^{t-1} \mathbf{1}(x \text{ is excited at time s})$. Then

$$ne_t(x) = \max_{|\vec{P}| \le t} \int_{\vec{P}} dX_0$$

where the maximum runs over all directed walks \vec{W} of length $\leq t$ starting from x.

Proof of key lemma.

$$\mathtt{ne}_t(x) \stackrel{\mathsf{def}}{=:} \mathtt{Rk}_t(x) \stackrel{\mathsf{TE}}{=} \max_{d(x,\tilde{z}) \leq t} \mathtt{Rk}_0(\tilde{z}) \stackrel{\mathsf{def}}{=} \max_{|\vec{P}| \leq t} \int_{\vec{W}} dX_0.$$

Theorem (L. 2015)

P a finite path, $(X_t)_{t\geq 0}$ arbitrary κ -color FCA trajectory on P, $\kappa\geq 3$. Then X_t synchronizes.

Figure: Simulation of The 20-color FCA on a path of 400 nodes for 150×20 and 70×3 iterations, respectively. The top row shows a random κ -coloring drawn from the uniform product measure, and κ iterations generate each successive row, from top to bottom.

Q. What can we say about the κ -color FCA on the infinite path \mathbb{Z} , started from the uniform product measure?

Clustering in the 3-color CCA, GHM, and FCA on $\mathbb Z$

Let $(X_t)_{t\geq 0}$ be either a 3-color CCA, GHM, or FCA trajectory on \mathbb{Z} , where X_0 is the uniform random 3-coloring of \mathbb{Z} .

Theorem (Fisch 1992)

For the 3-CCA on \mathbb{Z} , we have $\mathbb{P}(X_t(x) \neq X_t(x+1)) \sim \sqrt{2/3\pi t}$.

Theorem (Durrett, Steif 1991)

For the 3-color GHM on \mathbb{Z} , we have $\mathbb{P}(X_t(x) \neq X_t(x+1)) \sim \sqrt{2/27\pi t}$.

Theorem (L., Sivakoff 2017)

For the 3-color FCA on \mathbb{Z} , we have $\mathbb{P}(X_t(x) \neq X_t(x+1)) \sim \sqrt{8/9\pi t}$.

Figure: Simulations of the 3-color CCA (left), GHM (middle), FCA (right) on $\mathbb Z$

Clustering in the 3-color CCA, GHM, and FCA on $\ensuremath{\mathbb{Z}}$

Let $(X_t)_{t\geq 0}$ be either a 3-color CCA, GHM, or FCA trajectory on \mathbb{Z} , where X_0 is the uniform random 3-coloring of \mathbb{Z} .

Theorem (Fisch 1992)

For the 3-CCA on \mathbb{Z} , we have $\mathbb{P}(X_t(x) \neq X_t(x+1)) \sim \sqrt{2/3\pi t}$.

Theorem (Durrett, Steif 1991)

For the 3-color GHM on \mathbb{Z} , we have $\mathbb{P}(X_t(x) \neq X_t(x+1)) \sim \sqrt{2/27\pi t}$.

Theorem (L., Sivakoff 2017)

For the κ -color FCA on \mathbb{Z} , $\kappa \geq 3$, $\mathbb{P}(X_t(x) \neq X_t(x+1)) \sim \sqrt{8/9\pi t}$.

Embedded edge particle system

Figure: Simulations of the 3-color CCA (left), GHM (middle), FCA (right) on $\mathbb Z$

The evolution of "domain walls" behaves like an annihilating particle system:

1	0	2	2	0	2	0	0	0	2	0	1
1	1	0	0	0	0	0	0	0	0	1	1
1	1	1	0	0	0	0	0	0	1	1	1
1	1	1	1	0	0	0	0	1	1	1	1
1	1	1	1	1	0	0	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1

Figure: 3-color CCA on $\ensuremath{\mathbb{Z}}$

Embedded edge particle system

Figure: Simulations of the 3-color CCA (left), GHM (middle), FCA (right) on $\mathbb Z$

The evolution of "domain walls" behaves like an annihilating particle system:

1-	→ 0-	> 2	2←	-0-	> 2←	-0	0	0-	> 2←	-0←	-1
1	1-	→ 0	0	0	0	0	0	0	0+	-1	1
1	1	1-	> 0	0	0	0	0	0+	-1	1	1
1	1	1	1-	> 0	0	0	0+	-1	1	1	1
1	1	1	1	1-	> 0	0+	-1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1

Figure: 3-color CCA on $\ensuremath{\mathbb{Z}}$

Embedded edge particle system

Figure: Simulations of the 3-color CCA (left), GHM (middle), FCA (right) on $\mathbb Z$

The evolution of "domain walls" behaves like an annihilating particle system:

1-	→ ()-	→ 2	2←	-0-	→ 2←	-0	0	0	> 2←	-0←	-1
1	1-	→ ()	0	0	0	0	0	0	0+	-1	1
1	1	1-	> ()	0	0	0	0	0	-1	1	1
1	1	1	1-	> ()	0	0	0+	-1	1	1	1
1	1	1	1	1-	> ()	0+	-1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1

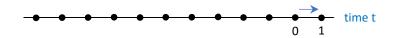
Figure: 3-color CCA on $\ensuremath{\mathbb{Z}}$

Clustering and survival of a random walk

Suppose there is a right particle on the edge (0,1) at time t.

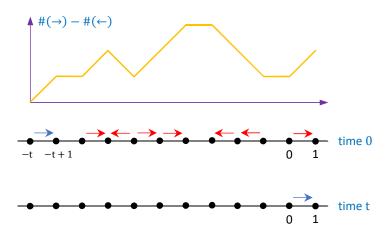
Clustering and survival of a random walk

This particle was distance t away at time 0 and lives up to time t, withtout being annihilated by a left particle.



Clustering and survival of a random walk

This requires #(right particle) > #(left particle) at every intermediate edge.



Clustering and survival of RW

► Thus we get

$$\begin{split} \mathbb{P}\left\{X_{t}(0) \neq X_{t}(1)\right\} &= 2\mathbb{P}\left\{dX_{t}(0, 1) = 1\right\} \\ &= \mathbb{P}\left\{\sum_{x = -t}^{s} dX_{0}(x, x + 1) \geq 1 \text{ for all } -t \leq s \leq t\right\}. \end{split}$$

▶ The sums of initial edge increments $dX_0(x, x + 1)$ behaves like a RW, and the above probability is known as a **survival probability** of this RW.

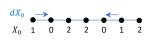
Clustering and survival of RW

► Thus we get

$$\begin{split} \mathbb{P}\left\{X_{t}(0) \neq X_{t}(1)\right\} &= 2\mathbb{P}\left\{dX_{t}(0, 1) = 1\right\} \\ &= \mathbb{P}\left\{\sum_{x = -t}^{s} dX_{0}(x, x + 1) \geq 1 \text{ for all } -t \leq s \leq t\right\}. \end{split}$$

- ▶ The sums of initial edge increments $dX_0(x, x + 1)$ behaves like a RW, and the above probability is known as a **survival probability** of this RW.
- ► For 3-color CCA, these increments are i.i.d. and there is a known result (e.g., Sparre-Anderson's formula).

 For 3-color GHM, these increments have finite-range correlation but can be handled using the i.i.d. results.



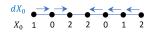
For 3-color FCA, we have to look at time 1 increments $dX_1(x, x + 1)$ and they have long-range correlation, so new method needs to be developed.

Clustering and survival of RW

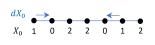
► Thus we get

$$\begin{split} \mathbb{P}\left\{ X_{t}(0) \neq X_{t}(1) \right\} &= 2\mathbb{P}\left\{ dX_{t}(0,1) = 1 \right\} \\ &= \mathbb{P}\left\{ \sum_{x = -t}^{s} dX_{0}(x, x + 1) \geq 1 \text{ for all } -t \leq s \leq t \right\}. \end{split}$$

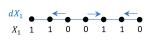
- ▶ The sums of initial edge increments $dX_0(x, x + 1)$ behaves like a RW, and the above probability is known as a **survival probability** of this RW.
- ► For 3-color CCA, these increments are i.i.d. and there is a known result (e.g., Sparre-Anderson's formula).



 For 3-color GHM, these increments have finite-range correlation but can be handled using the i.i.d. results.



For 3-color FCA, we have to look at time 1 increments $dX_1(x, x + 1)$ and they have long-range correlation, so new method needs to be developed.



Persistence of sums of correlated increments

- Let $(X_t)_{t\in\mathbb{Z}}$ be a stationary Markov chain on \mathfrak{X} with functional $g:\mathfrak{X}\to\mathbb{R}$ s.t. $\mathbb{E}(g(X_0))=0$ and $\mathbb{E}(g(X_0)^2)<\infty$.
- ▶ Let $S_t = g(X_1) + \cdots + g(X_t)$. For each $r \in \mathbb{R}$, and $t \geq 0$, define survival probabilities $Q^{\bullet}(r,t)$ by

$$Q^{\bullet}(r,t) := \mathbb{P}(S_1 \geq 0, \cdots, S_t \geq 0 \,|\, S_0 = r).$$

Define the *limiting variance* by

$$\gamma_g^2 := \mathsf{Var}[g(\mathtt{X}_0)] + 2\sum_{k=1}^\infty \mathsf{Cov}[g(\mathtt{X}_0), g(\mathtt{X}_k)].$$

Persistence of sums of correlated increments

- Let $(X_t)_{t\in\mathbb{Z}}$ be a stationary Markov chain on \mathfrak{X} with functional $g:\mathfrak{X}\to\mathbb{R}$ s.t. $\mathbb{E}(g(X_0))=0$ and $\mathbb{E}(g(X_0)^2)<\infty$.
- ▶ Let $S_t = g(X_1) + \cdots + g(X_t)$. For each $r \in \mathbb{R}$, and $t \geq 0$, define survival probabilities $Q^{\bullet}(r, t)$ by

$$\mathbb{Q}^{\bullet}(r,t) := \mathbb{P}(\mathbb{S}_1 \geq 0, \cdots, \mathbb{S}_t \geq 0 \,|\, \mathbb{S}_0 = r).$$

Define the *limiting variance* by

$$\gamma_g^2 := \mathsf{Var}[g(\mathtt{X}_0)] + 2\sum_{k=1}^\infty \mathsf{Cov}[g(\mathtt{X}_0), g(\mathtt{X}_k)].$$

Theorem (L., Sivakoff, 2017)

If $\gamma_g \in (0,\infty)$ and $(\mathtt{X}_{-t})_{t\geq 0}$ is ergodic, then

$$\int_0^\infty \mathbb{Q}^{\bullet}(-r,t) dr \sim \frac{\gamma_g}{\sqrt{2\pi}} t^{-1/2}.$$

Key lemma

▶ Define backward running maximum $\overleftarrow{M}(t)$ by

$$\bar{M}(t) = \max_{1 \leq k \leq t} g(X_{-t}) + \cdots + g(X_{-1}).$$

Lemma (L., Sivakoff, 2017)

For any constants C>0 and $\rho\in(0,1)$, the following two statements are equivalent:

- (i) $\mathbb{E}(\breve{M}(t)) \sim Ct^{1-\rho}$,
- (ii) $\int_0^\infty \mathbb{Q}^{\bullet}(-r,t) dr \sim (1-\rho)Ct^{-\rho}$.

Key lemma

▶ Define backward running maximum $\overleftarrow{M}(t)$ by

$$\bar{M}(t) = \max_{1 \leq k \leq t} g(X_{-t}) + \cdots + g(X_{-1}).$$

Lemma (L., Sivakoff, 2017)

For any constants C > 0 and $\rho \in (0,1)$, the following two statements are equivalent:

- (i) $\mathbb{E}(\overline{M}(t)) \sim Ct^{1-\rho}$,
- (ii) $\int_0^\infty \mathbb{Q}^{\bullet}(-r,t) dr \sim (1-\rho)Ct^{-\rho}$.

Remark: Lemma holds for any stationary process $(X_t)_{t\in\mathbb{Z}}$ without Markov property and second moment condition for $g(X_0)$

Theorem (L., Sivakoff, 2017)

If $\gamma_g \in (0,\infty)$ and $(X_{-t})_{t \geq 0}$ is ergodic, then

$$\int_0^\infty \mathbb{Q}^{\bullet}(-r,t)\,dr \sim \frac{\gamma_g}{\sqrt{2\pi}}t^{-1/2}.$$

Lemma (L., Sivakoff, 2017)

For any constants C>0 and $\rho\in(0,1)$, the following two statements are equivalent:

- (i) $\mathbb{E}(\overline{M}(t)) \sim Ct^{1-\rho}$,
- (ii) $\int_0^\infty \mathbb{Q}^{\bullet}(-r,t) dr \sim (1-\rho)Ct^{-\rho}$.

Proof of main thm:

Theorem (L., Sivakoff, 2017)

If $\gamma_g \in (0,\infty)$ and $(X_{-t})_{t \geq 0}$ is ergodic, then

$$\int_0^\infty \mathbb{Q}^{\bullet}(-r,t)\,dr \sim \frac{\gamma_g}{\sqrt{2\pi}}t^{-1/2}.$$

Lemma (L., Sivakoff, 2017)

For any constants C>0 and $\rho\in(0,1)$, the following two statements are equivalent:

- (i) $\mathbb{E}(\overline{M}(t)) \sim Ct^{1-\rho}$,
- (ii) $\int_0^\infty \mathbb{Q}^{\bullet}(-r,t) dr \sim (1-\rho)Ct^{-\rho}$.

Proof of main thm:

By functional CLT for Markov chains, $(t^{-1/2}[S](ts): 0 \le s \le 1) \xrightarrow{d} \gamma_g B$.

Theorem (L., Sivakoff, 2017)

If $\gamma_g \in (0,\infty)$ and $(X_{-t})_{t \geq 0}$ is ergodic, then

$$\int_0^\infty \mathbb{Q}^{\bullet}(-r,t) dr \sim \frac{\gamma_g}{\sqrt{2\pi}} t^{-1/2}.$$

Lemma (L., Sivakoff, 2017)

For any constants C > 0 and $\rho \in (0,1)$, the following two statements are equivalent:

- (i) $\mathbb{E}(\tilde{M}(t)) \sim Ct^{1-\rho}$,
- (ii) $\int_0^\infty \mathbb{Q}^{\bullet}(-r,t) dr \sim (1-\rho)Ct^{-\rho}$.

Proof of main thm:

By functional CLT for Markov chains, $\left(t^{-1/2}[\mathtt{S}](ts):0\leq s\leq 1\right)\stackrel{d}{\longrightarrow}\gamma_{\mathsf{g}}B.$

By uniform integrability, $\mathbb{E}(\overline{M}(t)) \sim \gamma_g \sqrt{\frac{2t}{\pi}}$.

Lemma

For any constants C > 0 and $\rho \in (0,1)$, TFAE:

- (i) $\mathbb{E}(\overleftarrow{M}(t)) \sim Ct^{1-\rho}$,
- (ii) $\int_0^\infty \mathbb{Q}^{\bullet}(-r,t) dr \sim (1-\rho)Ct^{-\rho}$.

How do we relate $\mathbb{Q}^{\bullet}(-r,t)$ and $\overline{M}(t)$?

Lemma

For any constants C > 0 and $\rho \in (0,1)$, TFAE:

- (i) $\mathbb{E}(\tilde{M}(t)) \sim Ct^{1-\rho}$,
- (ii) $\int_0^\infty \mathbb{Q}^{\bullet}(-r,t) dr \sim (1-\rho)Ct^{-\rho}$.

How do we relate $\mathbb{Q}^{\bullet}(-r,t)$ and $\overline{M}(t)$?

▶ Consider a 3-color CCA trajectory $(X_t)_{t\geq 0}$ on $\mathbb{Z}_{\leq 0}$.

For any constants C > 0 and $\rho \in (0,1)$, TFAE:

- (i) $\mathbb{E}(\overline{M}(t)) \sim Ct^{1-\rho}$,
- (ii) $\int_0^\infty \mathbb{Q}^{\bullet}(-r,t) dr \sim (1-\rho)Ct^{-\rho}$.

How do we relate $\mathbb{Q}^{\bullet}(-r,t)$ and $\overline{M}(t)$?

- ► Consider a 3-color CCA trajectory $(X_t)_{t\geq 0}$ on $\mathbb{Z}_{\leq 0}$.
- Let S_k be the sum of edge increments $dX_0(x, x + 1)$ on the interval [-t 1, 0], from left to right.

For any constants C > 0 and $\rho \in (0,1)$, TFAE:

- (i) $\mathbb{E}(\overline{M}(t)) \sim Ct^{1-\rho}$,
- (ii) $\int_0^\infty \mathbb{Q}^{\bullet}(-r,t) dr \sim (1-\rho)Ct^{-\rho}$.

How do we relate $\mathbb{Q}^{\bullet}(-r,t)$ and $\overline{M}(t)$?

- ▶ Consider a 3-color CCA trajectory $(X_t)_{t\geq 0}$ on $\mathbb{Z}_{\leq 0}$.
- Let S_k be the sum of edge increments $dX_0(x, x+1)$ on the interval [-t-1, 0], from left to right.
- By the lifting technique, for $ne_t(0) = \sum_{s=0}^t \mathbf{1}(X_{s+1}(0) \neq X_s(0))$,

$$\operatorname{ne}_t(0) = \max_{|\vec{P}| \leq t} \int_{\vec{P}} dX_0 = \bar{M}(t)$$

For any constants C > 0 and $\rho \in (0,1)$, TFAE:

- (i) $\mathbb{E}(\bar{M}(t)) \sim Ct^{1-\rho}$,
- (ii) $\int_0^\infty \mathbb{Q}^{\bullet}(-r,t) dr \sim (1-\rho)Ct^{-\rho}$.

How do we relate $\mathbb{Q}^{\bullet}(-r,t)$ and $\overline{M}(t)$?

- ▶ Consider a 3-color CCA trajectory $(X_t)_{t\geq 0}$ on $\mathbb{Z}_{\leq 0}$.
- Let S_k be the sum of edge increments $dX_0(x, x+1)$ on the interval [-t-1, 0], from left to right.
- ▶ By the lifting technique, for $ne_t(0) = \sum_{s=0}^t \mathbf{1}(X_{s+1}(0) \neq X_s(0))$,

$$ext{ne}_t(0) = \max_{|\vec{P}| \leq t} \int_{\vec{P}} dX_0 = ar{M}(t)$$

By the particle system perspective,

$$\mathbb{P}(X_{t+1}(0) \neq X_t(0)) = \mathbb{P}(\exists \to \mathsf{on}\ (-1,0) \ \mathsf{at}\ \mathsf{time}\ t) = \mathbb{Q}^{\bullet}(-1,t).$$

For any constants C > 0 and $\rho \in (0,1)$, TFAE:

- (i) $\mathbb{E}(\overline{M}(t)) \sim Ct^{1-\rho}$,
- (ii) $\int_0^\infty \mathbb{Q}^{\bullet}(-r,t) dr \sim (1-\rho)Ct^{-\rho}$.

How do we relate $\mathbb{Q}^{\bullet}(-r,t)$ and $\overline{M}(t)$?

- ▶ Consider a 3-color CCA trajectory $(X_t)_{t\geq 0}$ on $\mathbb{Z}_{\leq 0}$.
- Let S_k be the sum of edge increments $dX_0(x, x+1)$ on the interval [-t-1, 0], from left to right.
- ▶ By the lifting technique, for $ne_t(0) = \sum_{s=0}^t \mathbf{1}(X_{s+1}(0) \neq X_s(0))$,

$$ext{ne}_t(0) = \max_{|\vec{P}| \leq t} \int_{\vec{P}} dX_0 = ar{M}(t)$$

By the particle system perspective,

$$\mathbb{P}(X_{t+1}(0) \neq X_t(0)) = \mathbb{P}(\exists \to \mathsf{on} \ (-1,0) \ \mathsf{at} \ \mathsf{time} \ t) = \mathbb{Q}^{ullet}(-1,t).$$

• So $\mathbb{P}(\overleftarrow{M}(t+1) - \overleftarrow{M}(t) \geq 1) = \mathbb{Q}^{\bullet}(-1, t)$.

Some open questions

Figure: (Left) A4C on square lattice (with Moore neighborhood, deg 8), (Right) A4C on a uniform spanning tree of the lattice on the left

- Running time of A4C + SpanningTree = $O(\epsilon M|V| + (d^5 + \Delta^2)\log|V|)$.
- ▶ Bottleneck is the unknown diameter of the random spanning tree

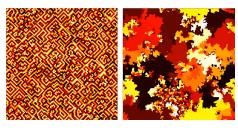


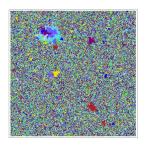
Figure: (Left) A4C on square lattice (with Moore neighborhood, deg 8), (Right) A4C on a uniform spanning tree of the lattice on the left

- Running time of A4C + SpanningTree = $O(\epsilon M|V| + (d^5 + \Delta^2)\log|V|)$.
- ▶ Bottleneck is the unknown diameter of the random spanning tree

Question

Is there a (randomized) distributed algorithm \mathcal{T} , which computes a spanning tree T of a given connected graph G=(V,E) with max degree Δ and diameter d, with the following properties?

- (i) \mathcal{T} can be implemented on G with $O(\log \Delta)$ memory per node.
- (ii) $\mathbb{E}(worst\ case\ running\ time) = diam(G)^{O(1)} \log |V|$.
- (iii) $diam(T) = diam(G)^{O(1)} \log |V|$.



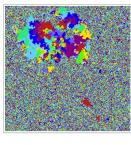
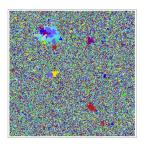


Figure: Two snapshots of 9-color CCA dynamics on a uniform spanning tree of a 400×400 torus, at times about 3,000 and 40,000.

▶ Consider the random κ -color CCA dynamics on an infinite rooted tree Γ . Is it true that all sites change their color infinitely often for all $\kappa \geq 0$?



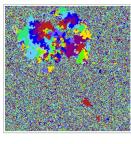
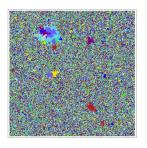


Figure: Two snapshots of 9-color CCA dynamics on a uniform spanning tree of a 400×400 torus, at times about 3,000 and 40,000.

- ▶ Consider the random κ -color CCA dynamics on an infinite rooted tree Γ . Is it true that all sites change their color infinitely often for all $\kappa \geq 0$?
- ▶ For large $br(\Gamma)$ compared to κ , a percolation argument gives $ne_t(0) = \Theta(t)$.



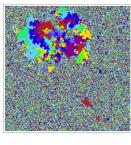
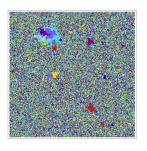


Figure: Two snapshots of 9-color CCA dynamics on a uniform spanning tree of a 400×400 torus, at times about 3,000 and 40,000.

- ▶ Consider the random κ -color CCA dynamics on an infinite rooted tree Γ . Is it true that all sites change their color infinitely often for all $\kappa \geq 0$?
- For large $br(\Gamma)$ compared to κ , a percolation argument gives $ne_t(0) = \Theta(t)$.
- ▶ For $br(\Gamma)$ small, simulation suggests that a rare nucleation center drives the system to fluctuation



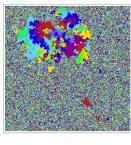


Figure: Two snapshots of 9-color CCA dynamics on a uniform spanning tree of a 400×400 torus, at times about 3,000 and 40,000.

- Consider the random κ -color CCA dynamics on an infinite rooted tree Γ . Is it true that all sites change their color infinitely often for all $\kappa \geq 0$?
- For large $br(\Gamma)$ compared to κ , a percolation argument gives $ne_t(0) = \Theta(t)$.
- For $br(\Gamma)$ small, simulation suggests that a rare nucleation center drives the system to fluctuation

Conjecture

 Γ a uniform spanning tree of \mathbb{Z}^2 . Let $(X_t)_{t\geq 0}$ be the random κ -color CCA trajectory on Γ . Then every site changes its color infinitely often almost surely.

Figure: Snapshots of the 5-color FCA on sqaure lattice (left), 4-color FCA on sqaure lattice (middle), and 4-color FCA on honeycomb lattice (right).

Conjecture

Let $(X_t)_{t\geq 0}$ be the κ -color FCA trajectory on \mathbb{Z}^d started from the uniform product probability measure.

- (i) For $\kappa=4$ and for all $d\geq 2$, $\lim_{t\to\infty}\mathbb{P}(X_t(x)=X_t(y))=1$ for any $x,y\in\mathbb{Z}^d$.
- (ii) For $\kappa \neq 4$ and for all $d \geq 2$, the trajectory $(X_t)_{t \geq 0}$ converges to a $\kappa + 1$ periodic limit cycle almost surely.

Thank you!