
MATH 170B LECTURE NOTE 2: COVARIANCE AND CORRELATION

HANBAEK LYU

2. HOW CAN WE QUANTIFY DEPENDENCE BETWEEN RVS?

2.1. Covariance. When two RVs X and Y are independent, we know that the pair (X ,Y ) is dis-
tributed according to the product distribution P((X ,Y ) = (x, y)) = P(X = x)P(Y = y) and we can
say a lot of things about their sum, difference, product, maximum, etc. For instance, the expecta-
tion of their product is the product of their expectations:

Exercise 2.1. Let X and Y be two independent RVs. Show that E(X Y ) = E(X )E(Y ).

But what if they are not independent? Then their joint distribution P((X ,Y ) = (x, y)) can be
very much different from the product distribution P(X = x)P(Y = y). Covariance is the quantity
that measures the ‘average disparity’ between the true joint distribution P((X ,Y ) = (x, y)) and the
product distribution P(X = x)P(Y = y).

Definition 2.2 (Covariance). Given two RVs X and Y , their covariance is denoted by Cov(X ,Y ) and
is defined by

Cov(X ,Y ) = E(X Y )−E(X )E(Y ). (1)

We say X and Y are correlated (resp., uncorrelated) if Cov(X ,Y ) 6= 0 (resp., Cov(X ,Y ) = 0).

Exercise 2.3. Show the following.

(i) Cov(X , X ) = Var(X ).
(ii) Cov(X ,Y ) = E[(X −E(X ))(Y −E(Y ))].

Exercise 2.4. Show that two RVs X and Y are uncorrelated if they are independent.

Example 2.5 (Uncorrelated but dependent). Two random variables can be uncorrelated but still
be dependent. Let (X ,Y ) be a uniformly sampled point from the unit circle in the 2-dimensional
plane. Parameterize the unit circle by S1 = {(cosθ, sinθ) |0 ≤ θ < 2π}. Then we can first sample a
uniform angle Θ ∼ Uniform([0,2π)), and then define (X ,Y ) = (cosΘ, sinΘ). Recall from your old
memory that

sin2t = 2cos t sin t . (2)

Now

E(X Y ) = E(cosΘsinΘ) (3)

= 1

2
E(sin2Θ) (4)

= 1

2

∫ 2π

0
sin2t d t (5)

= 1

2

[
−1

2
cos2t

]2π

0
= 0. (6)

On the other hand,

E(X ) = E(cosΘ) =
∫ 2π

0
cos t d t = 0 (7)

and likewise E(Y ) = 0. This shows Cov(X ,Y ) = 0, so X and Y are uncorrelated. However, they
satisfy the following deterministic relation

X 2 +Y 2 = 1, (8)

so clearly they cannot be independent.
1
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So if uncorrelated RVs can be dependent, what does the covariance really measure? It turns out,
Cov(X ,Y ) measures the ‘linear tendency’ between X and Y .

Example 2.6 (Linear transform). Let X be a RV, and define another RV Y by Y = aX +b for some
constants a,b ∈R. Let’s compute their covariance using linearity of expectation.

Cov(X ,Y ) = Cov(X , aX +b) (9)

= E(aX 2 +bX )−E(X )E(aX +b) (10)

= aE(X 2)+bE(X )−E(X )(aE(X )+b) (11)

= a[E(X 2)−E(X )2] (12)

= a Var(X ). (13)

Thus, Cov(X , aX +b) > 0 if a > 0 and Cov(X , aX +b) < 0 if a < 0. In other words, if Cov(X ,Y ) > 0,
then X and Y tend to be large at the same time; if Cov(X ,Y ) > 0, then Y tends to be small if X
tends to be large.

From the above example, it is clear that why the x- and y-coordinates of a uniformly sampled
point from the unit circle are uncorrelated – they have no linear relation!

Exercise 2.7 (Covariance is symmetric and bilinear). Let X and Y be RVs and fix constants a,b ∈R.
Show the following.

(i) Cov(aX +b,Y ) = aCov(X ,Y ).
(ii) Cov(X +Z ,Y ) = Cov(X ,Y )+Cov(Z ,Y ).
(iii) Cov(X ,Y ) = Cov(Y , X ).

Next, let’s say four RVs X ,Y , Z , and W are given. Suppose that Cov(X ,Y ) > Cov(Z ,W ) > 0. Can
we say that ‘the positive linear relation’ between X and Y is stronger than that between Z and W ?
Not quite.

Example 2.8. Suppose X is a RV. Let Y = 2X , Z = 2X , and W = 4X . Then

Cov(X ,Y ) = Cov(X ,2X ) = 2Var(X ), (14)

and

Cov(Z ,W ) = Cov(2X ,4X ) = 8Var(X ). (15)

But Y = 2X and W = 2Z , so the linear relation between the two pairs should be same.

So to compare the magnitude of covariance, we first need to properly normalize covariance so
that the effect of fluctuation (variance) of each coordinate is not counted: then only the correlation
between the two coordinates will contribute. This is captured by the following quantity.

Definition 2.9 (Correlation coefficient). Given two RVs X and Y , their correlation coefficientρ(X ,Y )
is defined by

ρ(X ,Y ) = Cov(X ,Y )p
Var(X )

p
VarY

. (16)

Example 2.10. Suppose X is a RV and fix constants a,b ∈R. Then

ρ(X , aX +b) = aCov(X , X )p
Var(X )

p
Var(aX +b)

= a Var(X )
p

Var(X )
√

a2 Var(X )
= a

|a| = sign(a). (17)

Exercise 2.11 (Cauchy-Schwarz inequality). Let X ,Y are RVs. Suppose E(Y 2) > 0. We will show
that the ‘inner product’ of X and Y is at most the product of their ‘magnitudes’
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(i) For any t ∈R, show that

E[(X − tY )2] = t 2E(Y 2)−2tE(X Y )+E(X 2) (18)

= E(Y 2)

(
t − E(X Y )

E(Y 2)

)2

+ E(X 2)E(Y 2)−E(X Y )2

E(Y 2)
. (19)

Conclude that

0 ≤ E
[(

X − E(X Y )

E(Y 2)
Y

)2]
= E(X 2)E(Y 2)−E(X Y )2

E(Y 2)
. (20)

(ii) Show that a RV Z satisfies E(Z 2) = 0 if and only if P(Z = 0) = 1.
(iii) Show that

E(X Y ) ≤
√
E(X 2)

√
E(Y 2), (21)

where the equality holds if and only if

P

(
X = E(X Y )

E(Y 2)
Y

)
= 1. (22)

Exercise 2.12. Let X ,Y are RVs such that Var(Y ) > 0. Let X̄ = X −E(X ) and Ȳ = Y −E(X ).

(i) Use (21) to show that

0 ≤ E
[(

X̄ − Cov(X ,Y )

Var(Y )
Ȳ

)2]
= Var(X )

(
1−ρ(X ,Y )2) . (23)

(ii) Show that |ρ(X ,Y )| ≤ 1.
(iii) Show that |ρ(X ,Y )| = 1 if and only if X̄ = aȲ for some constant a 6= 0.

2.2. Variance of sum of RVs. Let X ,Y be RVs. If they are not necessarily independent, what is the
variance of their sum? Using linearity of expectation, we compute

Var(X +Y ) = E[(X +Y )2]−E(X +Y )2 (24)

= E[X 2 +Y 2 +2X Y ]− (E(X )+E(Y ))2 (25)

= [E(X 2)−E(X )2]+ [E(Y 2)−E(Y )2]+2[E(X Y )−E(X )E(Y )] (26)

= Var(X )+Var(Y )+2Cov(X ,Y ). (27)

Note that Cov(X ,Y ) shows up in this calculation. We can push this computation for sum of more
than just two RVs.

Proposition 2.13. For RVs X1, X2 · · · , Xn , we have

Var

(
n∑

i=1
Xi

)
=

n∑
i=1

Var(Xi )+2
∑

1≤i , j≤n
Cov(Xi , X j ). (28)

Proof. By linearity of expectation, we have

Var

(
n∑

i=1
Xi

)
= E

[(
n∑

i=1
Xi

)2]
−

(
E

[
n∑

i=1
Xi

])2

(29)

= E
[ ∑

1≤i , j≤n
Xi X j

]
− ∑

1≤i , j≤n
E(Xi )E(X j ) (30)

=
[ ∑

1≤i , j≤n
E(Xi X j )

]
− ∑

1≤i , j≤n
E(Xi )E(X j ) (31)

= ∑
1≤i , j≤n

[
E(Xi X j )−E(Xi )E(X j )

]
(32)
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= ∑
1≤i≤n

[E(Xi Xi )−E(Xi )E(Xi )]+
∑

1≤i 6= j≤n

[
E(Xi X j )−E(Xi )E(X j )

]
(33)

= ∑
1≤i≤n

Var(X 2
i )+2

∑
1≤i< j≤n

[
E(Xi X j )−E(Xi )E(X j )

]
(34)

= ∑
1≤i≤n

Var(X 2
i )+2

∑
1≤i< j≤n

Cov(Xi , X j ). (35)

�

Exercise 2.14. Show that for independent RVs X1, X2, · · · , Xn , we have

Var

(
n∑

i=1
Xi

)
=

n∑
i=1

Var(Xi ). (36)

Example 2.15 (Number of fixed point in a random permutation). Suppose n people came to a
party and somehow the host mixed up their car keys and gave them back completely randomly at
the end of the party. Let Xi be a RV, which takes value 1 if person i got the right key and 0 otherwise.
Let Nn = X1+X2+·· ·+Xn be the total number of people who got their own keys back. We will show
that E(Nn) = Var(Nn) = 1.

First, we observe that each Xi ∼ Bernoulli(1/n). So we know that E(Xi ) = 1/n and Var(Xi ) =
E(X 2

i )−E(Xi )2 = E(Xi )−E(Xi )2 = n−1 −n−2 = (n −1)/n2. Clearly Xi ’s are not independent: If the
first person got the key number 2, then the second person will never get the right key.

A very important fact is that the linearity of expectation holds regardless of dependence (c.f.
Exercise 1.8 in Note 0), so

E[Nn] = E
[

n∑
i=1

Xi

]
=

n∑
i=1

E(Xi ) =
n∑

i=1

1

n
= 1. (37)

On the other hand, to compute the covariance, let’s take a look at E(X1X2). Note that if the first
person got her key, then the second person gets his key with probability 1/(n −1). So

E(X1X2) = 1 ·P(X1 = 1, X2 = 1) =P(X1 = 1)P(X2 = 1 |X1 = 1) = 1

n
· 1

n −1
. (38)

Hence we can compute their covariance:

Cov(X1, X2) = E(X1X2)−E(X1)E(X2) = 1

n(n −1)
− 1

n2 = n − (n −1)

n2(n −1)
= 1

n2(n −1)
. (39)

Since there is nothing special about the pair (X1, X2), we get

Var(Nn) =
n∑

i=1
Var(Xi )+2

∑
1≤i , j≤n

Cov(Xi , X j ) (40)

=
n∑

i=1

n −1

n2 +2
∑

1≤i , j≤n

1

n2(n −1)
(41)

= n −1

n
+2

(
n

2

)
1

n2(n −1)
(42)

= n −1

n
+2

n(n −1)

2!

1

n2(n −1)
(43)

= n −1

n
+ 1

n
= 1. (44)

So in the above example, we have shown E(N ) = Var(N ) = 1. Does this ring a bell? If X ∼
Poisson(1), then E(X ) = Var(N ) = 1 (c.f. Exercise 1.21 in Note 0). So is Nn somehow related to
the Poisson RV with rate 1? In the following two exercises, we will show that Nn approximately
follows Poisson(1) if n is large.
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Exercise 2.16 (Derangements). In reference to Example 2.15, let Dn be the total number of ar-
rangements of n keys so that no one gets the correct key.

(i) Show that the total number of arrangements of n keys is n!.
(ii) Show that there are (n −1)! arrangements where person 1 got the right key.
(iii) Show that there are (n −2)! arrangements where person 1 and 2 got the right key.
(iv) Show that there are

(n
2

)
(n −2)! arrangements where at least two people got the right key.

(v) Show that there are
(n

k

)
(n −k)! arrangements where at least k people got the right key.

(vi) By using inclusion-exclusion, show that

Dn = n!−
(

n

1

)
(n −1)!+

(
n

2

)
(n −2)!−

(
n

3

)
(n −3)!+·· ·+ (−1)n

(
n

n

)
(n −n)! (45)

= n!

(
1− 1

1!
+ 1

2!
− 1

3!
+·· ·+ (−1)n 1

n!

)
→ n!

e
as n →∞. (46)

Exercise 2.17. Let Nn = X1 +X2 +·· ·+Xn be as in Example 2.15.

(i) Use Exercise 2.16 to show that for each 1 ≤ k ≤ n,

P(Nn = k) =
(

n

k

)
Dn−k

n!
(47)

= n!

k !(n −k)!

(n −k)!

n!

(
1− 1

1!
+ 1

2!
− 1

3!
+·· ·+ (−1)n−k 1

(n −k)!

)
(48)

= 1

k !

(
1− 1

1!
+ 1

2!
− 1

3!
+·· ·+ (−1)n−k 1

(n −k)!

)
. (49)

(ii) Conclude that

lim
n→∞P(Nn = k) = e−1

k !
=P(Poisson(1) = k). (50)

Remark 2.18. Recall that Poisson(1) can be obtained from Binomial(n, p) where p = 1/n, for large
n (c.f. Example 1.20 in Note 0). In other words, the sum of n independent Bernoulli(1/n) RVs is
distributed approximately as Poisson(1). In the key arrangement problem in Example 2.15, note
that the correlation coefficient between Xi and X j is very small:

ρ(Xi , X j ) = Cov(Xi , X j )√
Var(X j )

√
Var(X j )

= n2

n2(n −1)2 = 1

(n −1)2 . (51)

So it’s kind of make sense that Xi ’s are almost independent for large n, so Nn ∼ Poisson(1) approx-
imately for large n.
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