
MATH 170B LECTURE NOTE 3: CONDITIONAL EXPECTATION AND VARIANCE

HANBAEK LYU

3. HOW CAN WE HANDLE MULTIPLE SOURCE OF RANDOMNESS?

3.1. Conditional expectation. Let X ,Y be discrete RVs. Recall that the expectation E(X ) is the
‘best guess’ on the value of X when we do not have any prior knowledge on X . But suppose we
have observed that some possibly related RV Y takes value y . What should be our best guess on
X , leveraging this added information? This is called the conditional expectation of X given Y = y ,
which is defined by

E[X |Y = y] =∑
x

xP(X = x|Y = y). (1)

This best guess on X given Y = y , of course, depends on y . So it is a function in y . Now if we do
not know what value Y might take, then we omit y and E[X |Y ] becomes a RV, which is called the
conditional expectation of X given Y .

Example 3.1. Suppose we have a biased coin whose probability of heads is itself random and is
distributed as Y ∼ Uniform([0,1]). Let’s flip this coin n times and let X be the total number of
heads. Given that Y = y ∈ [0,1], we know that X follows Binomial(n, y) (in this case we write X |U ∼
Binomial(n,Y )). So E[X |Y = y] = ny . Hence as a random variable, E[X |Y ] = nY ∼ Uniform([0,n]).
So the expectation of E[X |Y ] is the mean of Uniform([0,n]), which is n/2. This value should be the
true expectation of X .

The above example suggests that if we first compute the conditional expectation of X given
Y = y , and then average this value over all choice of y , then we should get the actual expectation
of X . Justification of this observation is based on the following fact

P(Y = y |X = x)P(X = x) =P(X = x, Y = y) =P(X = x |Y = y)P(Y = y). (2)

That is, if we are interested in the event that (X ,Y ) = (x, y), then we can either first observe the
value of X and then Y , or the other way around.

Proposition 3.2 (Iterated expectation). Let X ,Y be discrete RVs. Then E(X ) = E[E[X |Y ]].

Proof. We are going to write the iterated expectation E[E[X |Y ]] as a double sum and swap the order
of summation (Fubini’s theorem, as always).

E[E[X |Y ]] =∑
y
E[X |Y = y]P(Y = y) (3)

=∑
y

(∑
x

xP(X = x|Y = y)

)
P(Y = y) (4)

=∑
y

∑
x

xP(X = x|Y = y)P(Y = y) (5)

=∑
y

∑
x

xP(X = x, Y = y) (6)

=∑
x

∑
y

xP(Y = y |X = x)P(X = x) (7)

=∑
x

x

(∑
y
P(Y = y |X = x)

)
P(X = x) (8)

=∑
x

xP(X = x) = E(X ). (9)
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Remark 3.3. Here is an intuitive reason why the iterated expectation works. Suppose you want to
make the best guess E(X ). Pretending you know Y , you can imporove your guess to be E(X |Y ).
Then you admit that you didn’t know anything about Y and average over all values of Y . The result
is E[E[X |Y ]], and this should be the same best guess on X when we don’t know anything about Y .

All our discussions above hold for continuous RVs as well: We simply replace the sum by integral
and PMF by PDF. To summarize how we compute the iterated expectations when we condition on
discrete and continuous RV:

E[E[X |Y ]] =
{∑

y E[X |Y = y]P(Y = y) if Y is discrete∫ ∞
−∞E[X |Y = y] fY (y)d y if Y is continuous.

(10)

Exercise 3.4 (Iterated expectation for probability). Let X ,Y be RVs.

(i) For any x ∈R, show that P(X ≤ x) = E[1(X ≤ x)].
(ii) By using iterated expectation, show that

P(X ≤ x) = E[P(X ≤ x |Y )], (11)

where the expectation is taken over for all possible values of Y .

Example 3.5 (Example 3.1 revisited). Let Y ∼ Uniform([0,1]) and X ∼ Binomial(n,Y ). Then X |Y =
y ∼ Binomial(n, y) so E[X |Y = y] = ny . Hence

E[X ] =
∫ 1

0
E[X |Y = y] fY (y)d y =

∫ 1

0
ny d y = n/2. (12)

Example 3.6. Let X1 ∼ Exp(λ1) and X2 ∼ Exp(λ2) be independent exponential RVs. We will show
that

P(X1 < X2) = λ2

λ1 +λ2
(13)

using the iterated expectation. Using iterated expectation for probability,

P(X1 < X2) =
∫ ∞

0
P(X1 < X2 |X1 = x1)λ1e−λ1x1 d x1 (14)

=
∫ ∞

0
P(X2 > x1)λ1e−λ1x1 d x1 (15)

=λ1

∫ ∞

0
e−λ2x1 e−λ1x1 d x1 (16)

=λ1

∫ ∞

0
e−(λ1+λ2)x1 d x1 = λ1

λ1 +λ2
. (17)

Exercise 3.7. Consider a post office with two clerks. Three people, A, B , and C , enter simultane-
ously. A and B go directly to the clerks, and C waits until either A or B leaves before he begins
service. Let X A be the time that A spends at a register, and define XB and XB similarly. Com-
pute the probability P(X A > XB + XC ) that A leaves the post office after B and C , in the following
scenarios:

(a) the service time for each clerk is exactly (nonrandom) ten minutes?
(b) the service times are i , independently with probability 1/3 for i ∈ {1,2,3}?
(c) the service times are independent exponential variables with mean 1/µ?

Exercise 3.8. Suppose we have a stick of length L. Break it into two pieces at a uniformly chosen
point and let X1 be the length of the longer piece. Break this longer piece into two pieces at a
uniformly chosen point and let X2 be the length of the longer one. Define X3, X4, · · · in a similar
way.

(i) Show that X1 ∼ Uniform([L/2,L]).
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(ii) Show that X2 |X1 ∼ Uniform([X1/2, X1]).
(iii) Show that Xn+1 |Xn ∼ Uniform([Xn/2, Xn]).
(iv) Show that E[Xn] = (3L/4)n .

3.2. Conditional expectation as an estimator. We introduced the conditional expectation E[X |Y =
y] as the best guess on X given that Y = y . Such a ‘guess’ on a RV is called an estimator. Let’s first
take a look at two extremal cases, where observing Y gives absolutely no information on X or gives
everything.

Example 3.9. Let X and Y be independent discrete RVs. Then knowing the value of Y should not
yield any information on X . In other words, given that Y = y , the best guess of X should still be
E(X ). Indeed,

E(X |Y = y) =
n∑

x=0
xP(X = x |Y = y) =

n∑
x=0

xP(X = x) = E(X ). (18)

On the other hand, given that X = x, the best guess on X is just x, since the RV X has been revealed
and there is no further randomness. In other words,

E(X |X = x) =
n∑

z=0
zP(X = z |X = x) =

n∑
x=0

x1(z = x) = x. (19)

Exercise 3.10. Let X ,Y be discrete RVs. Show that for any function g :R→R,

E[X g (Y ) |Y ] = g (Y )E[X |Y ]. (20)

We now observe some general properties of the conditional expectation as an estimator.

Exercise 3.11. Let X ,Y be RVs and denote X̂ = E[X |Y ], meaning that X̂ is an estimator of X given
Y . Let X̃ = X̂ −X be the estimation error.

(i) Show that X̂ is an unbiased estimator of X , that is, E(X̂ ) = E(X ).
(ii) Show that E[X̂ |Y ] = X̂ . Hence knowing Y does not improve our current best guess X̂ .
(iii) Show that E[X̃ ] = 0.
(iv) Show that Cov(X̂ , X̃ ) = 0. Conclude that

Var(X ) = Var(X̂ )+Var(X̃ ). (21)

3.3. Conditional variance. As we have defined conditional expectation, we could define the vari-
ance of a RV X given that anther RV Y takes a particular value. Recall that the (unconditioned)
variance of X is defined by

Var(X ) = E[(X −E(X ))2]. (22)

Note that there are two places where we take expectation. Given Y , we should improve both ex-
pectations so the conditional variance of X given Y is defined by

Var(X |Y ) = E[(X −E[X |Y ])2 |Y ]. (23)

Proposition 3.12. Let X and Y be RVs. Then

Var(X |Y ) = E[X 2 |Y ]−E[X |Y ]2. (24)

Proof. Using linearity of conditional expectation and the fact that E[X |Y ] is not random given Y ,

Var(X |Y ) = E[X 2 −2XE[X |Y ]+E[X |Y ]2 |Y ] (25)

= E[X 2 |Y ]−E[2XE[X |Y ] |Y ]+E[E[X |Y ]2 |Y ] (26)

= E[X 2 |Y ]−E[X |Y ]E[2X |Y ]+E[X |Y ]2E[1 |Y ] (27)

= E[X 2 |Y ]−2E[X |Y ]2 +E[X |Y ]2 (28)
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= E[X 2 |Y ]−E[X |Y ]2. (29)

�

The following exercise explains in what sense the conditional expectation E[X |Y ] is the best
guess on X given Y , and that the minimum possible mean squared error is exactly the conditional
variance Var(X |Y ).

Exercise 3.13. Let X ,Y be RVs. For any function g :R→R, consider g (Y ) as an estimator of X . Let
EY [(X − g (Y ))2 |Y ] be the mean squared error.

(i) Show that

EY [(X − g (Y ))2 |Y ] = EY [X 2 |Y ]−2g (Y )EY [X |Y ]+ g (Y )2 (30)

= (g (Y )−EY (X |Y ))2 +EY [X 2 |Y ]−EY [X |Y ]2 (31)

= (g (Y )−EY (X |Y ))2 +Var(X |Y ). (32)

(ii) Conclude that the mean squared error is minimized when g (Y ) = EY [X |Y ] and the global
minimum is Var(X |Y ).

Next, we study how we can decompose the variance of X by conditioning on Y .

Proposition 3.14 (Law of total variance). Let X and Y be RVs. Then

Var(X ) = E(Var(X |Y ))+Var(E[X |Y ]). (33)

Proof. Using previous result, iterated expectation, and linearity of expectation, we have

Var(X ) = E(X 2)− (E(X ))2 (34)

= EY (E(X 2|Y ))− (EY (E(X |Y )))2 (35)

= EY (Var(X |Y )+ (E(X |Y ))2)− (EY (E(X |Y )))2 (36)

= EY (Var(X |Y ))+ [
EY (E(X |Y ))2)− (EY (E(X |Y )))2] (37)

= EY (Var(X |Y ))+VarY (E(X |Y )). (38)

�

Here is a handwavy explanation on why the above is true. Given Y , we should measure the fluc-
tuation of X |Y from the conditional expectation E[X |Y ], and this is measured as Var(X |Y ). Since
we don’t know Y , we average over all Y , giving E(Var(X |Y )). But the reference point E[X |Y ] itself
varies with Y , so we should also measure its own fluctuation by Var(E[X |Y ]). These fluctuations
add up nicely like Pythagorian theorem because E[X |Y ] is an optimal estimator so that these two
fluctuations are ‘orthogonal’.

Exercise 3.15. Let X ,Y be RVs. Write X̄ = E[X |Y ] and X̃ = X −E[X |Y ] so that X = X̄ + X̃ . Here X̄
is the estimate of X given Y and X̃ is the estimation error.

(i) Using Exercise 3.11 (iii) and iterated expectation, show that

E[X̃ 2] = Var(E[X |Y ]). (39)

(ii) Using Exercise 3.11 (iv), conclude that

Var(X ) = E(Var(X |Y ))+Var(E[X |Y ]). (40)

Example 3.16. Let Y ∼ Uniform([0,1]) and X ∼ Binomial(n,Y ). Since X |Y = y ∼ Binomial(n, y),
we have E[X |Y = y] = ny and Var(X |Y = y) = ny(1− y). Also, since Y ∼ Uniform([0,1]), we have

Var(E[X |Y ]) = Var(nY ) = n2

12
. (41)
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So by iterated expectation, we get

E(X ) = EY (E[X |Y ]) =
∫ 1

0
ny d y = n

2
. (42)

On the other hand, by law of total variance,

Var(X ) = E(Var(X |Y ))+Var(E(X |Y )) (43)

=
∫ 1

0
ny(1− y)d y +Var(nY ) (44)

= n

[
y2

2
− y3

3

]1

0
+ n2

12
(45)

= n2

12
+ n

6
. (46)

In fact, we can figure out the entire distribution of the binomial variable with uniform rate using
conditioning, not just its mean and variance (credit to our TA Daniel).

Exercise 3.17. Let Y ∼ Uniform([0,1]) and X ∼ Binomial(n,Y ) as in Exercise 3.16.

(i) Use iterated expectation for probability to write

P(X = k) =
(

n

k

)∫ 1

0
yk (1− y)n−k d y. (47)

(ii) Write An,k = ∫ 1
0 yk (1− y)y d y . Use integration by parts and show that

An,k = k

n −k +1
An,k−1. (48)

for all 1 ≤ k ≤ n. Conclude that for all 0 ≤ k ≤ n,

An,k = 1(n
k

) 1

n +1
. (49)

(iii) Conclude that X ∼ Uniform({0,1, · · · ,n}).

Exercise 3.18 (Exercise 3.8 continued). Let X1, X2, · · · , Xn be as in Exercise 3.8.

(i) Show that Var(X1) = L2/48.
(ii) Show that Var(X2) = (7/12)Var(X1)+ (1/48)E(X1)2.
(iii) Show that Var(Xn+1) = (7/12)Var(Xn)+ (1/48)E(Xn)2 for any n ≥ 1.
(iv) Using Exercise 3.8, show the following recursion on variance holds:

Var(Xn+1) = 7

12
Var(Xn)+ 1

48

(
9

16

)n

L2. (50)

Furthermore, compute Var(X2) and Var(X3).
(v)* Let An = (16

9

)n
Var(Xn). Show that An ’s satisfy

An+1 +L2 =
(

28

27

)
(An +L2). (51)

(vi)* Show that An = (28
27

)n−1
(A1 +L2)−L2 for all n ≥ 1.

(vii)* Conclude that

Var(Xn) =
[(

7

12

)n

−
(

9

16

)n]
L2. (52)
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