MATH 170B LECTURE NOTE 3: CONDITIONAL EXPECTATION AND VARIANCE

HANBAEK LYU

3. HOW CAN WE HANDLE MULTIPLE SOURCE OF RANDOMNESS?

3.1. Conditional expectation. Let X,Y be discrete RVs. Recall that the expectation E(X) is the
‘best guess’ on the value of X when we do not have any prior knowledge on X. But suppose we
have observed that some possibly related RV Y takes value y. What should be our best guess on
X, leveraging this added information? This is called the conditional expectation of X given'Y =y,
which is defined by

E[X|Y =yl =) xP(X =x|Y = y). )

This best guess on X given Y = y, of course, depends on y. So it is a function in y. Now if we do
not know what value Y might take, then we omit y and E[X|Y] becomes a RV, which is called the
conditional expectation of X given Y.

Example 3.1. Suppose we have a biased coin whose probability of heads is itself random and is
distributed as Y ~ Uniform([0, 1]). Let’s flip this coin n times and let X be the total number of
heads. Given that Y = y € [0, 1], we know that X follows Binomial(#, y) (in this case we write X|U ~
Binomial(n, Y)). So E[X|Y = y] = ny. Hence as a random variable, E[X|Y] = nY ~ Uniform([0, n]).
So the expectation of E[ X|Y] is the mean of Uniform([0, n]), which is n/2. This value should be the
true expectation of X.

The above example suggests that if we first compute the conditional expectation of X given
Y =y, and then average this value over all choice of y, then we should get the actual expectation
of X. Justification of this observation is based on the following fact

PY =yl X=x)PX=x)=PX=x,Y=y)=PX=x|Y =y)P(Y =y). (2)

That is, if we are interested in the event that (X,Y) = (x, y), then we can either first observe the
value of X and then Y, or the other way around.

Proposition 3.2 (Iterated expectation). Let X, Y be discrete RVs. Then E(X) = E[E[X|Y]].

Proof. We are going to write the iterated expectation E[E[X| Y]] as a double sum and swap the order
of summation (Fubini’s theorem, as always).

E[E[X|Y]] =) E[X|Y = yIP(Y = y) @)

y

=) D xPX=x|]Y =y)|P(Y =y) 4)
y X

=) Y xPX=xIY=y)P(Y =y) (5)
y X

=) Y xPX=x,Y=Y) 6)
y X

=) Y xP(Y =yl X=0)P(X=x) )
x y

:Zx(Z[FD(Y:yIsz))[P’(sz) 8)
x y

=) xP(X = x) =EX). 9)

O
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Remark 3.3. Here is an intuitive reason why the iterated expectation works. Suppose you want to
make the best guess E(X). Pretending you know Y, you can imporove your guess to be E(X|Y).
Then you admit that you didn’t know anything about Y and average over all values of Y. The result
is E[E[X| Y]], and this should be the same best guess on X when we don’t know anything about Y.

All our discussions above hold for continuous RVs as well: We simply replace the sum by integral
and PMF by PDE To summarize how we compute the iterated expectations when we condition on
discrete and continuous RV:

Zy[E[XI Y=yIP(Y=y) ifYisdiscrete
EEX|Y]] =45 P . (10)
S EIX Y =yl fy(y)dy ifY is continuous.
Exercise 3.4 (Iterated expectation for probability). Let X, Y be RVs.
(i) For any x € R, show that P(X < x) =E[1(X < x)].
(ii) By using iterated expectation, show that
PX=x)=EPX=x|Y)], 1n

where the expectation is taken over for all possible values of Y.

Example 3.5 (Example 3.1 revisited). Let Y ~ Uniform([0,1]) and X ~ Binomial(rn, Y). Then X|Y =
y ~ Binomial(n, y) so E[X|Y = y] = ny. Hence

1 1
[E[X]zfo [E[XIYzy]fy(y)dyzfo nydy=ni2. (12)

Example 3.6. Let X; ~ Exp(1;) and X, ~ Exp(A,) be independent exponential RVs. We will show
that

P(X) < X) = 2 (13)
! 2= A+
using the iterated expectation. Using iterated expectation for probability,
[e.o]
P(X; < X») :f PX;i<Xo|X; = xl))tle_llxl dxl (14)
0
[e.0]
=f P(X, > xl)lle_llxl dx1 (15)
0
(e.0]
=/11f e MM hm gy (16)
0
o0 A
=1 f e hthn gy = 21 17
L, e 17

Exercise 3.7. Consider a post office with two clerks. Three people, A, B, and C, enter simultane-
ously. A and B go directly to the clerks, and C waits until either A or B leaves before he begins
service. Let X4 be the time that A spends at a register, and define X3 and Xp similarly. Com-
pute the probability P(X4 > Xp + X¢) that A leaves the post office after B and C, in the following
scenarios:

(a) the service time for each clerk is exactly (nonrandom) ten minutes?
(b) the service times are i, independently with probability 1/3 for i € {1,2,3}?
(c) the service times are independent exponential variables with mean 1/u?

Exercise 3.8. Suppose we have a stick of length L. Break it into two pieces at a uniformly chosen
point and let X; be the length of the longer piece. Break this longer piece into two pieces at a
uniformly chosen point and let X, be the length of the longer one. Define X3, X4, in a similar
way.

(i) Show that X; ~ Uniform([L/2, L]).
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(ii) Show that X, | X; ~ Uniform([X;/2, Xi]).
(iii) Show that X1 | X, ~ Uniform([X,,/2, X,,]).
(iv) Show thatE[X;] = (3L/4)".

3.2. Conditional expectation as an estimator. We introduced the conditional expectation E[X |Y =
y] as the best guess on X given that Y = y. Such a ‘guess’ on a RV is called an estimator. Let’s first
take a look at two extremal cases, where observing Y gives absolutely no information on X or gives
everything.

Example 3.9. Let X and Y be independent discrete RVs. Then knowing the value of Y should not
yield any information on X. In other words, given that Y = y, the best guess of X should still be
E(X). Indeed,

n n
EX|Y=y)= xIP(X:xIY:y):ZxIP’(X:x)Z[E(X). (18)
x=0 x=0
On the other hand, given that X = x, the best guess on X is just x, since the RV X has been revealed
and there is no further randomness. In other words,

n n
EX|IX=x)=) zP(X=z|X=x)=) xl(z=x)=x. (19)
z=0 x=0
Exercise 3.10. Let X, Y be discrete RVs. Show that for any function g:R — R,
E[Xg(Y)|Y]=g(Y)E[X]|Y]. (20)

We now observe some general properties of the conditional expectation as an estimator.

Exercise 3.11. Let X, Y be RVs and denote X = E[X|Y], meaning that X is an estimator of X given
Y. Let X = X — X be the estimation error.

(i) Show that X is an unbiased estimator of X, that is, E(X) = E(X).

(ii) Show that E[X|Y] = X. Hence knowing Y does not improve our current best guess X.

(iii) Show that E[X] =0.

(iv) Show that Cov(X, X) = 0. Conclude that

Var(X) = Var(X) +Var(X). (21)

3.3. Conditional variance. As we have defined conditional expectation, we could define the vari-
ance of a RV X given that anther RV Y takes a particular value. Recall that the (unconditioned)
variance of X is defined by

Var(X) = E[(X — E(X))?]. (22)

Note that there are two places where we take expectation. Given Y, we should improve both ex-
pectations so the conditional variance of X given Y is defined by

Var(X|Y) =E[(X —E[X|Y])?|Y]. (23)

Proposition 3.12. Let X and Y be RVs. Then
Var(X|Y) =E[X?| Y] -E[X|Y]?. (24)
Proof. Using linearity of conditional expectation and the fact that E[X | Y] is not random given Y,
Var(X|Y) = E[X% - 2XE[X|Y]+E[X|Y]?| Y] (25)
=E[X?|Y]-E2XE[X|Y]| Y] +E[E[X|Y]?| Y] (26)
=E[X?|Y]-E[X|Y]E[2X|Y]+E[X]|YI’E[1]| Y] 27)

=E[X?|Y]-2E[X|Y]?+E[X]|Y]? (28)
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=E[X?|Y]-E[X]|Y]% (29)
O
The following exercise explains in what sense the conditional expectation E[X|Y] is the best

guess on X given Y, and that the minimum possible mean squared error is exactly the conditional
variance Var(X|Y).

Exercise 3.13. Let X, Y be RVs. For any function g: R — R, consider g(Y) as an estimator of X. Let
Ey[(X — g(Y))?| Y] be the mean squared error.

(i) Show that

Ey[(X —g(Y)?| Y] =Ey[X?| Y] -2g(Y)Ey[X|Y]+g(¥)? (30)
= (g(Y)-Ey(X|Y)*+Ey[X?| Y] -Ey[X| Y] (31)
=(gY)-Ey(X| Y))2+Var(X| Y). (32)

(ii) Conclude that the mean squared error is minimized when g(Y) = Ey[X|Y] and the global
minimum is Var(X|Y).

Next, we study how we can decompose the variance of X by conditioningon Y.

Proposition 3.14 (Law of total variance). Let X and Y be RVs. Then

Var(X) =E(Var(X|Y)) +Var(E[X | Y]). 33)
Proof. Using previous result, iterated expectation, and linearity of expectation, we have
Var(X) = EX?) - (EX)? (34)
= Ey(EX?Y)) - Ey(EXIYV))? (35)
= Ey(Var(X|Y) + (E(X|Y))?) - Ey (E(X|Y)))? (36)
= Ey(Var(X|Y)) + [Ey (E(X|Y)?) - Ey (EX|Y)))?] 37)
= [Ey(Var(X|Y))+ Vary (E(X]|Y)). (38)
O

Here is a handwavy explanation on why the above is true. Given Y, we should measure the fluc-
tuation of X | Y from the conditional expectation E[ X | Y], and this is measured as Var(X | Y). Since
we don’t know Y, we average over all Y, giving E(Var(X | Y)). But the reference point E[X | Y] itself
varies with Y, so we should also measure its own fluctuation by Var(E[X | Y]). These fluctuations
add up nicely like Pythagorian theorem because E[X | Y] is an optimal estimator so that these two
fluctuations are ‘orthogonal’.

Exercise 3.15. Let X, Y be RVs. Write X = E[X|Y] and X = X ~E[X| Y] so that X = X + X. Here X
is the estimate of X given Y and X is the estimation error.
(i) Using Exercise 3.11 (iii) and iterated expectation, show that

E[X?] = Var(E[X | Y]). (39)
(ii) Using Exercise 3.11 (iv), conclude that

Var(X) =E(Var(X|Y)) + Var(E[X | Y]). (40)

Example 3.16. Let Y ~ Uniform([0,1]) and X ~ Binomial(n, Y). Since X|Y = y ~ Binomial(n, y),
we have E[X|Y =yl =nyand Var(X|Y = y) = ny(1 — y). Also, since Y ~ Uniform([0, 1]), we have
2
Var(E[X | Y]) = Var(nY) = ’11—2 41)
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So by iterated expectation, we get
1

n
[E(X)=[Ey([E[X|Y])=f nydy=§. (42)
0
On the other hand, by law of total variance,
Var(X) =E(Var(X|Y)) + Var(E(X | Y)) (43)
1
:f ny(l-y)dy+Var(nY) (44)
0
2 311 2
s 5
2 3, 12
n® n
=—+—. (46)
12 6

In fact, we can figure out the entire distribution of the binomial variable with uniform rate using
conditioning, not just its mean and variance (credit to our TA Daniel).

Exercise 3.17. Let Y ~ Uniform([0,1]) and X ~ Binomial(#n, Y) as in Exercise 3.16.
(i) Use iterated expectation for probability to write

1
P(X=k) = (Z) fo yFa-y"*ray. 47)

(i) Write A,k = fol yk(1-y)? dy. Use integration by parts and show that
k

A p=——mA, k1. 48
nk n—k+1 nk—1 (48)
forall 1 < k < n. Conclude thatforall0< k< n,
A= 1 1 (49)
T e
(iii) Conclude that X ~ Uniform({0,1,---, n}).
Exercise 3.18 (Exercise 3.8 continued). Let X7, X»,---, X, be as in Exercise 3.8.

(i) Show that Var(X;) = L?/48.
(ii) Show that Var(X,) = (7/12) Var(Xy) + (1/48)E(X;)2.
(iii) Show that Var(X,,+1) = (7/12) Var(X,,) + (1/48)E(X,,)? for anyn=1.
(iv) Using Exercise 3.8, show the following recursion on variance holds:
Var(X,,41) = lVar(X,,) + 1 (i)n L. (50)
12 48 \ 16
Furthermore, compute Var(X,) and Var(Xs).

(W)* Let A, = (%)nVar(Xn). Show that A,,’s satisfy

28
Aps1 +L% = (2—7)(An+L2). (51)

(vi)* Show that A, = (2)"" (A, + [%) ~ I forall n> 1.

(vii)* Conclude that
Var(X,,) = [(1)’1—(3)"] L? (52)
12 16 ’
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