MATH 170B LECTURE NOTE 4: TRANSFORMS

HANBAEK LYU

4., UNDERSTANDING RVS VIA CALCULUS AND ANALYSIS

In this section, we will see how we associate a function Mx(¢) to each RV X and how we can
understand X by looking at Mx (¢) instead. The advantage is that now we can use powerful tools
from calculus and analysis (e.g., differentiation, integral, power series, Taylor expansion, etc.) to
study RVs.

4.1. Moment generating function. Let X be a RV. Consider a new RV g(X) = e'X, where ¢ is a real-
valued parameter we inserted for a reason to be clear soon. A classic point of view of studying X is
to look at its moment generating function (MGF), which is the expectation E[e’X] of the RV e*X.

Example 4.1. Let X be a discrete RV with PMF

1/2 ifx=2
P(X=x)={1/3 ifx=3 0))
1/6 ifx=5.
Its MGF is
[E[efX]=£+£+e—5t. )
2 3 6

Here is a heuristic for why we might be interested in the MGF of X. Recall the Taylor expansion
of the exponential function e*:

2§
e=l+—+—+—+--. 3
12t 3!
Plugin s = tX and get
X Xx*, x
e X =1+ =t+ P+ 1+ 4)
1 2! 3!

Taking expectation and using its ‘linearity’, this gives us

2 3
e i
Notice that the right hand side is a power series in variable ¢, and the kth moment E[X¥] of X shows
up in the coefficient of the kth order term t*. In other words, by simply taking the expectation of
e'X, we can get all higher moments of X. In this sense, the MGF E[e’X] generates all moments of
X, hence we call its name ‘moment generating function’.

As youmight have noticed, the equation (5) needs more justification. For example, what if E[ X 3
is infinity? Also, can we really use linearity of expectation for a sum of infinitely many RVs as in
the right hand side of (4)? We will get to this theoretical point later, and for now let’s get ourselves
more familiar to MGF computation.

EleX]=1 5)

Example 4.2 (Bernoulli RV). Let X ~ Bernoulli(p). Then
EleX1=elp+e1-p)=1-p+e'p. (6)

Example 4.3 (Poisson RV). Let X ~ Poisson(A). Then using the Taylor expansion of the exponen-
tial function,

©  Ake™? © (e 1)k
E[etX] — ekt — e—/l ( ) — e—/le/let — el(et—l). (7)
k! k!
k=0 : k=0 :

1
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Exercise 4.4 (Geometric RV). Let X ~ Geom(p). Show that

t
FleXj= —P% 8
[e"”] —(U=-pye 8
Example 4.5 (Uniform RV). Let X ~ Uniform([a, b]). Then
b 1 1 elX b et _ pat
E[e'X =f tx dx = —_— | =77 - 9
] ae b—a . b—al t |, tb-a) ®)
Example 4.6 (Exponential RV). Let X ~ Exp(A1). Then
o0 o0
E[e’X] = f e e Mdx = )Lf e=Mx gy, (10)
0 0
Considering two cases when £ < 1 and ¢t = A, we get
A .
= ift<A
[E[etX] — A—t 1 (11)
oo ift=A.

Example 4.7 (Standard normal RV). Let X ~ N(0,1). Then

—co V2T 27 J-c0

By completing square, we can write

2 2

al +tx= 1(x2 2tx) = 1(x n?+ d (13)
2 2 2 2"
So we get
Ele'X] = Lfoo o 02122212 etz/zfoo Le—(x—tﬁ/z dx. (14)
\/27’[ —00 —c0 V2T

Notice that the integrand in the last expression is the PDF of a normal RV with distribution N(-¢,1).
Hence the last integral equals 1, so we conclude

E[e’X] = e!"/2, (15)

Exercise 4.8 (MGF of linear transform). Let X be aRV and a, b be constants. Let Mx (¢) be the MGF
of X. Then show that

E[e"“X*D)) = &P My (ap). (16)
Exercise 4.9 (Standard normal). Let X ~ N(u,02) and Z ~ N(0, 1). Using the fact that E[e’%] = e'*/
and Exercise 4.9, show that

[E[etY] — eUZt2/2+t/.l. (17)

4.2. Two important theorems about MGFs. The power series expansion (5) of MGF may not be
valid in general. The following theorem gives a sufficient condition for which such an expansion
is true. We omit its proof in this lecture.

Theorem 4.10. Let X be a RV. Suppose there exists a constant h > 0 such that E[e'X] < oo for all
X € (=h, h). Then the kth moment E[X¥] exists for all k = 0 and there exists a constant € > 0 such
that forall t € (—¢,¢),
00 [E[Xk]
Xy _ k
Ele’*] = ];)—k! t~. (18)
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For each RV X, we say its MGF exists whenever the hypothesis of the above theorem holds.
One of the consequence of the above theorem is that we can access its kth moment by taking kth
derivative of its MGF and evaluating at = 0.

Exercise 4.11. Suppose the MGF of a RV X exists. Then show that for each integer k = 0,

dk tX k
—Ele™|  =Ex". (19)

Example 4.12 (Poisson RV). Let X ~ Poisson(A). In Example 4.3, we have computed
EleX] ="V vreR. (20)

Differentiating by ¢ and evaluating at ¢ = 0, we get

d t t
E[X] = 2 gMe ‘”| = Me ‘1)/1ef| -y 1)
dt t=0 t=0
We can also compute its second moment as
d? ' d : :
E[X%] = — M€V = Zpetle-D+e) g plle=Drigol 1)‘ =AA+1). (22)
dr? =0 dt t=0 =0
This also implies that
Var(X) = E[X?] -E[X]? = A(A+1) - A% = A. (23)

Example 4.13 (Exponential RV). Let X ~ Exp(A). Our calculation in Example 4.6 implies that

Xy _
Ele "] = 17 re(-1,A). (24)
We can compute the first and second moment of X:
Exj =LA | = A | - (25)
dtA—tl=0 A-0?l=0 A
E[X?] =d—zi| _ 24 A ) S -2 (26)
A2 A—tl=0 dt(A-0?li=0 A-03l=0 A2

In fact, by recognizing A/ (A — ) as a geometric series,

Ele'X] = ﬁ =1+ () + @A+ @I A +-- 27

WA 2% , 3UAS 4
+ r+ + t
1! 2! 3!

+--- (28)

Hence by comparing with (18), we conclude that E[X k1 = K1/ AK for all k= 0.

The second theorem for MGFs is that they determine the distribution of RVs. This will be criti-
cally used later in the proof of the central limit theorem.

Theorem 4.14. Let X,Y, and X, for n = 1 be RVs whose MGFs exist.

(i) (Uniqueness) Suppose Ele’X] = E[e'Y] for all sufficiently smallt. ThenP(X < s) =P(Y < s) for
all seR.

(ii) (Continuity) Supposelim,,_.oE[e’*"] = E[e'X] for all sufficiently small t and thatE[e'X] is con-
tinuous at t = 0. Then P(X, < s) — P(X < s) for all s such that P(X < x) is continuous at
xX=Ss.
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4.3. MGF of sum of independent RVs. One of the nice properties of MGFs is the following factor-
ization for sums of independent RVs.
Proposition 4.15. Let X,Y be independent RVs. Then

Ele'®* V)] = E[e" IE[e"Y]. (29)

If you believe that the RVs eX and e’Y are independent, then the proof of the above result is
one-line:

In general, it is a special case of the following result.

Proposition 4.16. Let X,Y be independent RVs. Then for any integrable functions g1, 8> : R — R, we
have

Elg1(X)g2(Y)] = Elg1 (X)]E[g2(Y)]. (31)
Proof. 1f X, Y are continuous RVs,
Elg1(X)g2(Y)] =f f g1 & fx,y(x,y)dxdy (32)
= f f 81 (& fxx) fy () dxdy (33)
=f g1(x) fx(x) (f gz(y)fy(y)) dy (34)
=E[g2(Y)] f g1(%) fx(x)dx (35)
=Elg1(X)]E[g(Y)]. (36)
For discrete RVs, use summation and PMF instead of integral and PDE U

Exercise 4.17 (Binomial RV). Let X ~ Binomial(n, p). Use the MGF of Bernoulli RV and Proposition
4.15 to show that

Ele'X]=(1—-p+e'p). 37)

Example 4.18 (Sum of independent Poisson RVs). Let X; ~ Poisson(A;) and X, ~ Poisson(1;) be
independent Poisson RVs. Let Y = X; + X». Using Exercise 4.3, we have

E[efY] =[E[etX1][E[etX2] — e(ﬂl‘*’/’lg)(et—l)' (38)
Notice that the last expression is the MGF of a Poisson RV with rate 1; + A,. By the Uniqueness of
MGF (Theorem 4.14 (i)), we conclude that Y ~ Poisson(A; + A»).
Exercise 4.19 (Sum of independent normal RVs). Let X; ~ N(u;, 0'%) and X, ~ N (Hg,O’%) be inde-
pendent normal RVs.
(i) Show that E[e’™1*X2)] = exp[(02 + 03) 1212 + t(py + p2)].
(ii) Conclude that X; + Xo ~ N (i1 + p2, 02 + 03).

4.4. Sum of random number of independent RVs. Suppose Xj, X»,--- are independent and iden-
tically distributed (i.i.d.) RVs and let N be another independent RV taking values in nonnegative
integers (e.g., Binomial). For anew RV Y by

Y=X1+Xo+---+ Xp. (39)

Note that we are summing a random number of X;’s, so there are two sources of randomness that
determines Y. As usual, we use conditioning to study such RVs. For instance,

E[YIN=n]=E[X;+ -+ Xl =E[X1]+---+E[X,] = nEX; (40)
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Var(Y |N = n) =Var(Xj +---+ X;;) = Var(Xj) +--- + Var(X,) = nVar(Xy). (41)
Hence iterated expectation gives
E[Y]=E[E[Y|N]] = EINE[X;]] = E[X;]E[N]. (42)

On other other hand, law of total variance gives

Var(Y) =E[Var(Y | N)] + Var(E[Y | N]) (43)
=E[NVar(X;)] + Var(NE[X;]) (44)
= Var(X))E[N] + E[X;]? Var(N). (45)

Furthermore, can we also figure out the MGF of Y? After all, MGF is an expectation so we can
also get it by iterated expectation. First we compute the conditional version. Denoting Mx () =
Ele"],

|E[efY | N: n] — [E[el'(X1++Xn)] — [E[etXl ...e[Xn] (46)
=E[e"M]---E[e"X"] = E[e"™]" = My, (1)" 47)
— enlongl(t)‘ (48)

The last line is the trick here. Now the iterated expectation gives
Ele’Y] = E[E[e’Y | N]] = E[e18Mx (DN}, (49)

Note that the last expression is nothing but the MFG of N evaluated at log My, (¢) instead of t.
Hence

Ele'Y] = My(log Mx, (1)). (50)
Let us summarize what have obtained so far.

Proposition 4.20. Let X1, X5, -+ be i.i.d. RVs and let N be another independent RV which takes
values from nonnegative integers. Let Y = Z;CV:O Xi. Denote the MGF of any RV Z by Mz(t). Then
we have

E[Y]=E[NIE[X1]] (51)
Var[Y] = Var(X;)E[N] + E[X;]? Var(N) (52)
My (1) = Mn(log Mx, (). (53)

Example 4.21. Let X; ~ Exp(A) for i = 0 and let N ~ Poisson(v). Suppose all RVs are independent.
Define Y = leyzl X;. Then
E[Y]=E[N]E[X;] =A/A =1, (54)
Var(Y) = Var(X;)E[N] + E[X;]? Var(N) = i + i = g (55)
- ! ! AN
On other hand, recall that My, (1) = % and My (t) = e*¢'~D, Hence
[E[etY] — e/l(explogﬁ—l) — e/l(%—l) = ei-i. (56)

So we know everything about Y. Knowing the MGF of Y, we could get all the moments of Y. For
instance,

d a a AA=1)+ At
E[Y] = —ert =ert

dt =0 A-1)2 =0 - 67
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Exercise 4.22. Let X1, X»,--- beii.d. RVs and let N be another independent RV which takes values
from nonnegative integers. Let Y = chvzo Xk. Denote the MGF of any RV Z by Mz(¢). Using the
fact that My (1) = My(log Mx, (1)), derive

E[Y] =E[N]E[X,], (58)
Var[Y] = Var(X))E[N] + E[X;]? Var(N). (59)

Example 4.23. Let X; ~ Exp(A) for i = 0 and let N ~ Geom(p). Let Y = sz\':l Xk. Suppose all RVs
are independent. Recall that
pe'

Tuae (60)

A
MXl(l‘)Zm, My(1) =

Hence
A
Pit  _ pA __rA
1-(1-pA& @A-0-A0-p) pA-t
Notice that this is the MGF of an Exp(pA) variable. Thus by uniqueness, we conclude that ¥ ~
Exp(pA). If you remember, sum of k independent Exp(1) RVs were not an exponential RV (its

distribution is Erlang(k, 1). See Exercise 1.19 in Note 1). But as we have seen in this example, if you
sum a random number of independent exponentials, they could by exponential again.

My (1) = 61)

Exercise 4.24. Let X; ~ Geom(q) for i = 0 and let N ~ Geom(p). Suppose all RVs are independent.
_vN

Let Y =3 Xk-

(i) Show that the MGF of Y is given by

pqe’

Yy _
B = T e

(62)

(ii) Conclude that Y ~ Geom(pq).
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