
MATH 170B LECTURE NOTE 4: TRANSFORMS

HANBAEK LYU

4. UNDERSTANDING RVS VIA CALCULUS AND ANALYSIS

In this section, we will see how we associate a function MX (t ) to each RV X and how we can
understand X by looking at MX (t ) instead. The advantage is that now we can use powerful tools
from calculus and analysis (e.g., differentiation, integral, power series, Taylor expansion, etc.) to
study RVs.

4.1. Moment generating function. Let X be a RV. Consider a new RV g (X ) = e t X , where t is a real-
valued parameter we inserted for a reason to be clear soon. A classic point of view of studying X is
to look at its moment generating function (MGF), which is the expectation E[e t X ] of the RV e t X .

Example 4.1. Let X be a discrete RV with PMF

P(X = x) =


1/2 if x = 2

1/3 if x = 3

1/6 if x = 5.

(1)

Its MGF is

E[e t X ] = e2t

2
+ e3t

3
+ e5t

6
. (2)

Here is a heuristic for why we might be interested in the MGF of X . Recall the Taylor expansion
of the exponential function e s :

e s = 1+ s

1!
+ s2

2!
+ s3

3!
+·· · . (3)

Plug in s = t X and get

e t X = 1+ X

1!
t + X 2

2!
t 2 + X 3

3!
t 3 +·· · . (4)

Taking expectation and using its ‘linearity’, this gives us

E[e t X ] = 1+ E[X ]

1!
t + E[X 2]

2!
t 2 + E[X 3]

3!
t 3 +·· · . (5)

Notice that the right hand side is a power series in variable t , and the kth moment E[X k ] of X shows
up in the coefficient of the kth order term t k . In other words, by simply taking the expectation of
e t X , we can get all higher moments of X . In this sense, the MGF E[e t X ] generates all moments of
X , hence we call its name ‘moment generating function’.

As you might have noticed, the equation (5) needs more justification. For example, what if E[X 3]
is infinity? Also, can we really use linearity of expectation for a sum of infinitely many RVs as in
the right hand side of (4)? We will get to this theoretical point later, and for now let’s get ourselves
more familiar to MGF computation.

Example 4.2 (Bernoulli RV). Let X ∼ Bernoulli(p). Then

E[e t X ] = e t p +e0(1−p) = 1−p +e t p. (6)

Example 4.3 (Poisson RV). Let X ∼ Poisson(λ). Then using the Taylor expansion of the exponen-
tial function,

E[e t X ] =
∞∑

k=0
ekt λ

k e−λ

k !
= e−λ

∞∑
k=0

(e tλ)k

k !
= e−λeλe t = eλ(e t−1). (7)

1



2 HANBAEK LYU

Exercise 4.4 (Geometric RV). Let X ∼ Geom(p). Show that

E[e t X ] = pe t

1− (1−p)e t . (8)

Example 4.5 (Uniform RV). Let X ∼ Uniform([a,b]). Then

E[e t X ] =
∫ b

a
e t x 1

b −a
d x = 1

b −a

[
e t x

t

]b

a
= ebt −eat

t (b −a)
. (9)

Example 4.6 (Exponential RV). Let X ∼ Exp(λ). Then

E[e t X ] =
∫ ∞

0
e t xλe−λx d x =λ

∫ ∞

0
e(t−λ)x d x. (10)

Considering two cases when t <λ and t ≥λ, we get

E[e t X ] =
{

λ
λ−t if t <λ
∞ if t ≥λ.

(11)

Example 4.7 (Standard normal RV). Let X ∼ N (0,1). Then

E[e t X ] =
∫ ∞

−∞
e t x 1p

2π
e−x2/2 d x = 1p

2π

∫ ∞

−∞
e−x2/2+t x d x. (12)

By completing square, we can write

−x2

2
+ t x =−1

2
(x2 −2t x) = 1

2
(x − t )2 + t 2

2
. (13)

So we get

E[e t X ] = 1p
2π

∫ ∞

−∞
e−(x−t )2/2e t 2/2 d x = e t 2/2

∫ ∞

−∞
1p
2π

e−(x−t )2/2 d x. (14)

Notice that the integrand in the last expression is the PDF of a normal RV with distribution N (−t ,1).
Hence the last integral equals 1, so we conclude

E[e t X ] = e t 2/2. (15)

Exercise 4.8 (MGF of linear transform). Let X be a RV and a,b be constants. Let MX (t ) be the MGF
of X . Then show that

E[e t (aX+b)] = ebt MX (at ). (16)

Exercise 4.9 (Standard normal). Let X ∼ N (µ,σ2) and Z ∼ N (0,1). Using the fact that E[e t Z ] = e t 2/2

and Exercise 4.9, show that

E[e tY ] = eσ
2t 2/2+tµ. (17)

4.2. Two important theorems about MGFs. The power series expansion (5) of MGF may not be
valid in general. The following theorem gives a sufficient condition for which such an expansion
is true. We omit its proof in this lecture.

Theorem 4.10. Let X be a RV. Suppose there exists a constant h > 0 such that E[e t X ] < ∞ for all
x ∈ (−h,h). Then the kth moment E[X k ] exists for all k ≥ 0 and there exists a constant ε > 0 such
that for all t ∈ (−ε,ε),

E[e t X ] =
∞∑

k=0

E[X k ]

k !
t k . (18)
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For each RV X , we say its MGF exists whenever the hypothesis of the above theorem holds.
One of the consequence of the above theorem is that we can access its kth moment by taking kth
derivative of its MGF and evaluating at t = 0.

Exercise 4.11. Suppose the MGF of a RV X exists. Then show that for each integer k ≥ 0,

d k

d t k
E[e t X ]

∣∣∣
t=0

= E[X k ]. (19)

Example 4.12 (Poisson RV). Let X ∼ Poisson(λ). In Example 4.3, we have computed

E[e t X ] = eλ(e t−1) ∀t ∈R. (20)

Differentiating by t and evaluating at t = 0, we get

E[X ] = d

d t
eλ(e t−1)

∣∣∣
t=0

= eλ(e t−1)λe t
∣∣∣

t=0
=λ. (21)

We can also compute its second moment as

E[X 2] = d 2

d t 2 eλ(e t−1)
∣∣∣

t=0
= d

d t
λeλ(e t−1)+t

∣∣∣
t=0

=λeλ(e t−1)+t (λe t +1)
∣∣∣

t=0
=λ(λ+1). (22)

This also implies that

Var(X ) = E[X 2]−E[X ]2 =λ(λ+1)−λ2 =λ. (23)

Example 4.13 (Exponential RV). Let X ∼ Exp(λ). Our calculation in Example 4.6 implies that

E[e t X ] = λ

λ− t
t ∈ (−λ,λ). (24)

We can compute the first and second moment of X :

E[X ] = d

d t

λ

λ− t

∣∣∣
t=0

= λ

(λ− t )2

∣∣∣
t=0

= 1

λ
(25)

E[X 2] = d 2

d t 2

λ

λ− t

∣∣∣
t=0

= d

d t

λ

(λ− t )2

∣∣∣
t=0

= 2λ

(λ− t )3

∣∣∣
t=0

= 2

λ2 . (26)

In fact, by recognizing λ/(λ− t ) as a geometric series,

E[e t X ] = 1

1− t/λ
= 1+ (t/λ)+ (t/λ)2 + (t/λ)3 +·· · (27)

= 1+ 1!/λ

1!
t + 2!/λ2

2!
t 2 + 3!/λ3

3!
t 3 +·· · . (28)

Hence by comparing with (18), we conclude that E[X k ] = k !/λk for all k ≥ 0.

The second theorem for MGFs is that they determine the distribution of RVs. This will be criti-
cally used later in the proof of the central limit theorem.

Theorem 4.14. Let X ,Y , and Xn for n ≥ 1 be RVs whose MGFs exist.

(i) (Uniqueness) Suppose E[e t X ] = E[e tY ] for all sufficiently small t . Then P(X ≤ s) = P(Y ≤ s) for
all s ∈R.

(ii) (Continuity) Suppose limn→∞E[e t Xn ] = E[e t X ] for all sufficiently small t and that E[e t X ] is con-
tinuous at t = 0. Then P(Xn ≤ s) → P(X ≤ s) for all s such that P(X ≤ x) is continuous at
x = s.
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4.3. MGF of sum of independent RVs. One of the nice properties of MGFs is the following factor-
ization for sums of independent RVs.

Proposition 4.15. Let X ,Y be independent RVs. Then

E[e t (X+Y )] = E[e t X ]E[e tY ]. (29)

If you believe that the RVs e t X and e tY are independent, then the proof of the above result is
one-line:

E[e t (X+Y )] = E[e t X e tY ] = E[e t X ]E[e tY ]. (30)

In general, it is a special case of the following result.

Proposition 4.16. Let X ,Y be independent RVs. Then for any integrable functions g1, g2 :R→R, we
have

E[g1(X )g2(Y )] = E[g1(X )]E[g2(Y )]. (31)

Proof. If X ,Y are continuous RVs,

E[g1(X )g2(Y )] =
∫ ∞

−∞

∫ ∞

−∞
g1(x)g2(y) fX ,Y (x, y)d x d y (32)

=
∫ ∞

−∞

∫ ∞

−∞
g1(x)g2(y) fX (x) fY (y)d x d y (33)

=
∫ ∞

−∞
g1(x) fX (x)

(∫ ∞

−∞
g2(y) fY (y)

)
d y (34)

= E[g2(Y )]
∫ ∞

−∞
g1(x) fX (x)d x (35)

= E[g1(X )]E[g2(Y )]. (36)

For discrete RVs, use summation and PMF instead of integral and PDF. �

Exercise 4.17 (Binomial RV). Let X ∼ Binomial(n, p). Use the MGF of Bernoulli RV and Proposition
4.15 to show that

E[e t X ] = (1−p +e t p)n . (37)

Example 4.18 (Sum of independent Poisson RVs). Let X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2) be
independent Poisson RVs. Let Y = X1 +X2. Using Exercise 4.3, we have

E[e tY ] = E[e t X1 ]E[e t X2 ] = e(λ1+λ2)(e t−1). (38)

Notice that the last expression is the MGF of a Poisson RV with rate λ1 +λ2. By the Uniqueness of
MGF (Theorem 4.14 (i)), we conclude that Y ∼ Poisson(λ1 +λ2).

Exercise 4.19 (Sum of independent normal RVs). Let X1 ∼ N (µ1,σ2
1) and X2 ∼ N (µ2,σ2

2) be inde-
pendent normal RVs.

(i) Show that E[e t (X1+X2)] = exp[(σ2
1 +σ2

2)t 2/2+ t (µ1 +µ2)].
(ii) Conclude that X1 +X2 ∼ N (µ1 +µ2,σ2

1 +σ2
2).

4.4. Sum of random number of independent RVs. Suppose X1, X2, · · · are independent and iden-
tically distributed (i.i.d.) RVs and let N be another independent RV taking values in nonnegative
integers (e.g., Binomial). For a new RV Y by

Y = X1 +X2 +·· ·+XN . (39)

Note that we are summing a random number of Xi ’s, so there are two sources of randomness that
determines Y . As usual, we use conditioning to study such RVs. For instance,

E[Y |N = n] = E[X1 +·· ·+Xn] = E[X1]+·· ·+E[Xn] = nEX1 (40)
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Var(Y |N = n) = Var(X1 +·· ·+Xn) = Var(X1)+·· ·+Var(Xn) = n Var(X1). (41)

Hence iterated expectation gives

E[Y ] = E[E[Y |N ]] = E[NE[X1]] = E[X1]E[N ]. (42)

On other other hand, law of total variance gives

Var(Y ) = E[Var(Y |N )]+Var(E[Y |N ]) (43)

= E[N Var(X1)]+Var(NE[X1]) (44)

= Var(X1)E[N ]+E[X1]2 Var(N ). (45)

Furthermore, can we also figure out the MGF of Y ? After all, MGF is an expectation so we can
also get it by iterated expectation. First we compute the conditional version. Denoting MX (t ) =
E[e t X ],

E[e tY |N = n] = E[e t (X1+···+Xn )] = E[e t X1 · · ·e t Xn ] (46)

= E[e t X1 ] · · ·E[e t Xn ] = E[e t X1 ]n = MX1 (t )n (47)

= en log MX1 (t ). (48)

The last line is the trick here. Now the iterated expectation gives

E[e tY ] = E[E[e tY |N ]] = E[e(log MX1 (t ))N ]. (49)

Note that the last expression is nothing but the MFG of N evaluated at log MX1 (t ) instead of t .
Hence

E[e tY ] = MN (log MX1 (t )). (50)

Let us summarize what have obtained so far.

Proposition 4.20. Let X1, X2, · · · be i.i.d. RVs and let N be another independent RV which takes
values from nonnegative integers. Let Y = ∑N

k=0 Xk . Denote the MGF of any RV Z by MZ (t ). Then
we have

E[Y ] = E[N ]E[X[1]] (51)

Var[Y ] = Var(X1)E[N ]+E[X1]2 Var(N ) (52)

MY (t ) = MN (log MX1 (t )). (53)

Example 4.21. Let Xi ∼ Exp(λ) for i ≥ 0 and let N ∼ Poisson(ν). Suppose all RVs are independent.
Define Y =∑N

k=1 Xi . Then

E[Y ] = E[N ]E[X1] =λ/λ= 1, (54)

Var(Y ) = Var(X1)E[N ]+E[X1]2 Var(N ) = λ

λ2 + λ

λ2 = 2

λ
. (55)

On other hand, recall that MX1 (t ) = λ
λ−t and MN (t ) = eλ(e t−1). Hence

E[e tY ] = eλ(explog λ
λ−t −1) = eλ( λ

λ−t −1) = e
λt
λ−t . (56)

So we know everything about Y . Knowing the MGF of Y , we could get all the moments of Y . For
instance,

E[Y ] = d

d t
e

λt
λ−t

∣∣∣
t=0

= e
λt
λ−t

λ(λ− t )+λt

(λ− t )2

∣∣∣
t=0

= 1. (57)
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Exercise 4.22. Let X1, X2, · · · be i.i.d. RVs and let N be another independent RV which takes values
from nonnegative integers. Let Y = ∑N

k=0 Xk . Denote the MGF of any RV Z by MZ (t ). Using the
fact that MY (t ) = MN (log MX1 (t )), derive

E[Y ] = E[N ]E[X1], (58)

Var[Y ] = Var(X1)E[N ]+E[X1]2 Var(N ). (59)

Example 4.23. Let Xi ∼ Exp(λ) for i ≥ 0 and let N ∼ Geom(p). Let Y = ∑N
k=1 Xk . Suppose all RVs

are independent. Recall that

MX1 (t ) = λ

λ− t
, MN (t ) = pe t

1− (1−p)e t . (60)

Hence

MY (t ) = p λ
λ−t

1− (1−p) λ
λ−t

= pλ

(λ− t )−λ(1−p)
= pλ

pλ− t
. (61)

Notice that this is the MGF of an Exp(pλ) variable. Thus by uniqueness, we conclude that Y ∼
Exp(pλ). If you remember, sum of k independent Exp(λ) RVs were not an exponential RV (its
distribution is Erlang(k,λ). See Exercise 1.19 in Note 1). But as we have seen in this example, if you
sum a random number of independent exponentials, they could by exponential again.

Exercise 4.24. Let Xi ∼ Geom(q) for i ≥ 0 and let N ∼ Geom(p). Suppose all RVs are independent.
Let Y =∑N

k=0 Xk .

(i) Show that the MGF of Y is given by

E[e tY ] = pqe t

1− (1−pq)e t . (62)

(ii) Conclude that Y ∼ Geom(pq).
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