MATH 170B LECTURE NOTE 5: LIMIT THEOREMS

HANBAEK LYU

5. WHAT CAN WE SAY FROM OBSERVING REPEATED EXPERIMENTS?

5.1. Overview of limit theorems. The primary subject in this section is the sequence of i.i.d. RVs
and their partial sums. Namely, let X, X»,--- be an (infinite) sequence of i.i.d. RVs, and define
their nth partial sum S, = X + Xo +---+ X, for all n = 1. If we call X; the ith step size or increment,
then the sequence of RVs (S;) > is called a random walk, where we usually set Sy = 0. Think of
X; as the gain or loss after betting once in a casino. Then §,, is the net gain of fortune after betting
n times. Of course there are ups and downs in the short term, but what we want to analyze using
probability theory is the long-term behavior of the random walk (S;),>;. Results of this type is
called limit theorems.
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FIGURE 1. Simulation of simple random walks

Suppose each increment X} has a finite mean p. Then by linearity of expectation and indepen-
dence of the increments, we have
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So the sample mean S,/ n has constant expectation and shrinking variance. Hence it makes sense
to guess that it should behave as the constant y, without taking the expectation. That is,

S
lim == = p. 3)

n—oo n
But this expression is shaky, since the left hand side is a limit of RVs while the right hand side is a
constant. In what sense the random sample means converge to p? This is the content of the law

of large numbers, for which we will prove a weak and a strong versions.
1
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The first limit theorem we will encounter is called the Weak Law of Large Numbers (WLLN),
which is stated below:
Theorem 5.1 (WLLN). Let (Xy)x=1 be i.i.d. RVs with mean pu < oo and let S, = Z,’Clzl X;,n=1bea

random walk. Then for any positive constant € > 0,

lim [P’(

n—oo

Sn
7—;1 >£)=0. (4)

In words, the probability that the sample mean S, /n is not within € distance from its expectation
L decays to zero as n tends to infinity. In this case, we say the sequence of RVs (S;,/n),>1 converges
to u in probability.

The second version of law of large numbers is call the strong law of large numbers (SLLN), which
is available if the increments have finite variance.

Theorem 5.2 (SLLN). Let (Xy)r>1 be i.i.d. RVs and let S,, = Zzzl Xi, n =1 be a random walk.
SupposeE[X1] = p < 0o and E[X?] < co. Then
P(limﬁ=p):l. 5)
n—oo n
To make sense out of this, notice that the limit of sample mean lim,_. S;,/n is itself a RV. Then
SLLN says that this RV is well defined and its value is p with probability 1. In this case, we say the
sequence of RVs (S,,/n),>1 converges to y with probability 1 or almost surely.

Perhaps one of the most celebrated theorems in probability theory is the central limit theorem
(CLT), which tells about how the sample mean S,/ n “fluctuates” around its mean p. From 2, if we
denote 02 = Var(X;) < oo, we know that Var(S,,/n) = 0%/n — 0 as n — oco. So the fluctuation decays
as we add up more increments. To see the effect of fluctuation, we first center the sample mean
by subtracting its expectation and “zoom in” by dividing by the standard deviation ¢/y/n. This is
where the name ‘central limit’ comes from: it describes the limit of centered random walks.

Theorem 5.3 (CLT). Let (Xy) =1 bei.i.d. RVsand let S, = ZZZI X;, n=1 bearandom walk. Suppose
E[X1] = u < oo andE[X?] = 02 < co. Let Z ~ N(0,1) be a standard normal RV and define

_Sp—un _Spln—p

Zy = . 6
" ovn olvn ©)
Then forall zeR,
1 z <2
lim P(Z 5z:[P>Zsz:—f e 2 dx. 7
Jm (Zp=2) ( ) Ner A e (7

In words, the centered and rescaled RV Z,, is asymptotically distributed as a standard normal RV
Z ~ N(0,1). In this case, we say Z, converges to Z as n — oo in distribution. This is a remarkable
result since as long as the increments Xj have finite mean and variance, it does not matter which
distribution that they follow: the ‘central limit’ always looks like a standard normal distribution.
Later in this section, we will prove this result by using the MGF of S,, and Taylor-expanding it up
to the second order term.

5.2. Bounding tail probabilities. In this subsection, we introduce two general inequalities called
the Markov’s and Chebyshef’s inequalities. They are useful in bounding tail probabilities of the
form P(X = x) using the expectation E[X] and variance Var(X), respectively. Their proofs are quite
simple but they have lots of nice applications and implications.

Proposition 5.4 (Markov’s inequality). Let X = 0 be a nonnegative RV with finite expectation. Then
forany a >0, we have

E[X]
[FD(X = (Z) < 7 (8)
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Proof. Consider an auxiliary RV Y define as follows:
a ifX=a
Y = i 9
0 ifX<a.

Note that we always have Y < X. Hence we should have E[Y] < E[X]. But since E[Y] = aPP(X = a),
we have

AP(X = a) < E[X]. (10)
Dividing both sides by a > 0 gives the assertion. g

Example 5.5. In Exercise 2.11 (ii), we have shown that E[Z 2=0] implies P(Z = 0) = 1. Markov’s
inequality gives a simple proof of this fact. Indeed, for any a > 0,

2
P(Z’=>a) < ELZ7]

=0. (11

This means that P(Z2=0)=1,s0 P(Z=0) = 1.

Proposition 5.6 (Chebyshef’s inequality). Let X be any RV with E[X] = p < co and Var(X) < oco.
Then for any a > 0, we have

Var(X)
P(X—-ul=a)< P (12)
Proof. Applying Markov’s inequality for the nonnegative RV (X — u)?, we get
E[(X -w)?® Var(X)
PIX -4z @) =PUX -’z @) s ——F— = ———. (13)
O
Example 5.7. Let X ~ Exp(A). Since E[X] = 1/A, for any a > 0, the Markov’s inequality gives
1
P(Xza)=<—, (14)
al
while the true probability is
P(X=a) =e " (15)
On the other hand, Var(X) = 1/A? so Chebyshef’s inequality gives
P(IX-1/Alza)= YV (16)
If 1/A < a, the true probability is
PIX-1/Aza)=PXza+1/)+P(X<-a+1/1) (17)
=P(X2a-1/A)=e M1 = pl-Aa, (18)

As we can see, both Markov’s and Chebyshef’s inequalities give loose estimates, but the latter gives
a slightly stronger bound.

Example 5.8 (Chebyshef’s inequality for bounded RVs). Let X be a RV taking values from the in-
terval [a, b]. Suppose we don’t know anything else about X. Can we say anything useful about tail
probability P(X = 1)? If we were to use Markov’s inequality, then certainly a < E[X] < b and in the
worst case E[X] = b. Hence we can at least conclude

b
P(X=A) < T (19)
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On the other hand, let’s get a bound on Var(X) and use Chebyshef’s inequality instead. We claim
that

(b-a)*
Var(X) < VI (20)
which would yield by Chebyshef’s inequality that
b- 2
POX —E[X]| < 1)< 4/1? . (21)

Intuitively speaking, Var(X) is the largest when the value of X is as much spread out as possible at
the two extreme values, a and b. Hence the largest variance will be achieved when X takes a and
b with equal probabilities. In this case, E[X] = (a+ b)/2 so

a+b® (a+b’® _(b-a)

Var(X) = E[X?] - E[X]? = 22
ar(X) = E[X"] - E[X] > 2 2 (22)
Exercise 5.9. Let X be a RV taking values from the interval [a, b].
(i) Use the usual ‘completing squares’ trick for a second moment to show that
0<E[(X- 0% =(t-E[X)*+Var(X) VteR. (23)
(ii) Conclude that E[(X — £)?] is minimized when ¢ = E[X] and the minimum is Var(X).
(iii) By pluggingin t = (a+ b)/2 in (23), show that
(b-a)? a+b)?
Var(X) =E[(X —a)(X - b)] + —[E[X] - 2 . (24)

(iv) Show that E[(X —a)(X - b)] <0.
(v) Conclude that Var(X) < (b — a)?/4, where the equality holds if and only if X takes the extreme
values a and b with equal probabilities.

5.3. The WLLN and convergence in probability. In this subsection, we prove the weak law of
large numbers (Theorem 5.1) and study the notion of convergence in probability. Assuming finite
variance for each increment, the weak law is an easy consequence of Chebyshef’s inequality.

Theorem 5.10 (WLLN with second moment). Let (Xy)i>1 bei.i.d. RVs with finite mean yu < co and
finite variance. Let S, = ¥.;_, Xi, n = 1. Then for any positive constant € >0,

lim IP(
n—oo

Proof. By Chebyshef’s inequality, for any € > 0 we have

ﬁ— >£)—0 (25)
n H 7

S Var(S,/n) Var(X
P(_n_’u >€)S (2n ): (21)’ (26)
n € ne
where the last expression converges to 0 as n — co. ([l

The proof of the full WLLN without the finite second moment assumption needs another tech-
nique called ‘truncation’. We won't cover this technicality in this course and take Theorem 5.1 for
granted.

The weak law of large numbers is the first time that we encounter the notion of ‘convergence in
probability’. We say a sequence of RVs converge to a constant in probability if the the probability
of staying away from that constant goes to zero:

Definition 5.11. Let (X;),>1 be a sequence of RVs and let 1 € R be a constant. We say X, converges
to u in probability if for each € > 0,

lim P (| X, — | >¢)=0. 27)

n—oo
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Before we proceed further, let us take a moment and think about the definition of convergence
in probability. Recall that a sequence of real numbers (x,) ;>0 convergesto x if for each ‘error level’
€ > 0, there exists a large integer N(¢) > 0 such that

|x,—x|<e Vn=N(e). (28)

If we would like to say that a sequence of RVs (X})>¢ ‘converges’ to some real number x, how
should we formulate this? Since X, is an RV, {| X, — x| < €} is an event. On the other hand, we can
also view each x, as an RV, even though it is a real number. Then we can rewrite (30) as

P(lx,—x|<e)=1 Vn=N(e). (29)

For general RVs, requiring P(| X, — x| < €) = 1 for any large n might not be possible. But we can fix
any desired level of ‘confidence’, § > 0, and require

P(lx,—xl<e)=1-6 (30)
for sufficiently large n. This is precisely (27).

Example 5.12 (Empirical frequency). Let A be an event of interest. We would like to estimate the
unknown probability p = P(A) by observing a sequence of indpendent experiments. namely, let
(Xi) k=0 be asequence ofi.i.d. RVs where X = 1(A) is the indicator variable of the event A for each
k=1.Let pp:= (X1 +---+ X,)/n. Since E[X;] = P(A) = p, by WLLN we conclude that

pn— p inprobability as n — co. (31)

Example 5.13 (Polling). Let E4 be the event that a randomly select voter supports candidate A.
Using a poll, we would like to estimate p = [P(E,), which can be understood as the proportion
of supporters of candidate A. As before, we observe a sequence of i.i.d. indicator variables X; =
1(E4). Let py, := S, /n be the empirical proportion of supporters of A out of n samples. We know
by WLLN that p,, converges to p in probability. But if we want to guarantee a certain confidence
level a for an error bound ¢, how many samples should be take?

By Chebyshef’s inequality, we get the following estimate:

Var(p,) _ Var[X;] - 1
e ne2 T 4ne?’
Note that for the last inequality, we noticed that Xj € [0,1] and used Exercise 5.9 (or you can use

that for Y ~ Bernoulli(p), Var(Y) = p(1 — p) < 1/4). Hence, for instance, if € = 0.01 and a = 0.95,
then we would need to set n large enough so that

P(Ipn—pl>e) < (32)

000

. 10
P(1pn—pl>0.01) < <0.05. (33)

This yields n = 50,000. In other words, if we survey at least n = 50,000 independent voters, then
the empirical frequency p,, is between p —0.01 and p + 0.01 with probability at least 0.95. Still in
other words, the true frequency p is between p, —0.01 and p;, + 0.01 with probability at least 0.95
if n = 50,000. We don't actually need this many samples. We will improve this result later using
central limit theorem.

Exercise 5.14 (Monte Carlo integration). Let (Xj)>; bei.i.d. Uniform([0,1]) RVsandlet f:[0,1] —
R be a continuous function. For each n =1, let

1
In=— (FXD)+ f(X2) +-+ f(Xn). (34)

(i) Suppose [, |f(x)|dx < co. Show that I,, — I := [ f(x)dx in probability.
(i) Further assume that fol | f(x)]? dx < oo. Use Chebyshef’s inequality to show that

1
P(|In—1|2a/\/ﬁ)sw:%(f f(x)zdx—Iz). (35)
0

a
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Exercise 5.15. Let (X,;);=0 be a sequence of i.i.d. Exp(1) RVs. Define Y, = min(Xj, Xo, -+, X3,).

(i) For each ¢ > 0, show that P(|Y;, — 0| > ¢) = e A€,
(i) Conclude that Y;, — 0 in probability as n — co.

Example 5.16. For each integer n = 1, define a RV X, by

n with prob. 1/n
n= . (36)
1/n with prob. 1-1/n.
Then X; — 0 in probability as n — co. Indeed, for each € > 0,
P(X,—-0|>¢)=P(X;,>¢e)=1/n (37)
for all n> 1/&. Hence lim,,_.o,P(| X;, — 0| > €) = 0. However, note that
ElX,)=1+n'-n?—1 asn— oo. (38)

This example indicates that convergence in probability only cares about probability of the event
P(| X, —E[X,]| > €) but not the actual value of X, when that ‘bad’ event occurs.

Example 5.17 (Coupon collector’s problem). Let (X;)>; be asequence ofi.i.d. Uniform({1,2,::-, n})
variables. Think of the value of X; as the label of the coupon you collect at ¢th trial. We are inter-
ested in how many times we need to reveal a new random coupon to collect a full set of n distinct
coupons. That is, let

" =min{r = 1|#{X1, Xo, -+, X;} = n}. (39)

Because of the possible overlap, we expect n reveals should not get us the full set of n coupons.
Indeed,

n n-1 n-2 1 n!
PE"=n=— —— - —=—. (40)
n n n n"
Certainly this probability rapidly goes to zero as n — co. So we need to reveal more than z coupons.
But how many? The answer turns out to be 7" =~ nlogn. More precisely,

Tl’l

nlogn — 1 asn— ooin probability. (41)

A change of perspective might help us. Instead of waiting to collect all n coupons, let’s progres-
sively collect k distinct coupons for k =1 to n. Namely, for each 1 < k < n, define

8 = min{r = 1|#X, Xo, -+, X;} = k}. (42)

So 7¥ is the first time that we collect k distinct coupons.

Now consider what has to happen to collect k + 1 distinct coupons from k distinct coupons?
Here is an example. Say at time 72 we have coupons {1,3}. 73 is the first time that we pick up a new
coupon from except 1 and 3. This happens with probability (n —2)/n and since each draw is i.i.d.,

-2
-7 ~Geom(n ) 43
n

A similar reasoning shows

(44)

Tk+1—rk~Ge0m(n_k).

So starting from the first coupon, we wait a Geom(1/n) time to get a new coupon, and wait a
Geom(2/n) time to get another new coupon, and so on. Note that these geometric waiting times

are all independent. So we can decompose 7" into a sum of independent geometric RVs:

n—1
= Z(Tk“—rk). (45)
k=1
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Then using the estimates in Exercise 5.18, it is straightforward to show that
Elz"] = nlogn, Var(z")<n?. (46)
In Exercise 5.19, we will show (41) using Chebyshef’s inequality.

Exercise 5.18. In this exercise, we estimate some partial sums using integral comparison.
(i) For anyinteger d =1, show that

i 1 fn 1 "il 1
—=<| —=dx<) — 47)
k=2 kd 1 k= kd

by considering the upper and lower sum for the Riemann integral [;" x 4dx.
(ii) Show that

n—1 1
logn < —<1+log(n-1). (48)
k=1 k
(iii) Show thatforalld =2,
n-1 1 © o ]
—sZ—lerf —dx<2. (49)
k=1 k4 k=1 k4 1 x4
Exercise 5.19. Foreach n=1,let Xj ,, Xo,5,--+, Xy, n be asequence of independent geometric RVs

where Xi. , ~Geom((n—k)/n). Define t" = X , + Xo p + -+ + Xy .
(i) Show thatE[t"] = ”ZZ: kL Using Exercise 5.18 (ii), deduce that
nlogn <E[t"] < nlog(n—1) + n. (50)
(ii) Using Var(Geom(p)) = (1 - p)/p? < p~2 and Exercise 5.18 (iii), show that
n-1
Var(r") = n* Y k% <2n” (51)
k=1
(iii) By Chebyshef’s inequality, show that for each ¢ > 0,
Var(t") - 2

P(It" —E[z"]| > enlogn) < < . (52)
( 8") e2n?log’n ~ €2log’n
Conclude that

n_E[gh

TnTg[;] — 0 as n — ooin probability. (53)
(iv) By using part (i), conclude that
n

. li)gn — 1 as n — ooin probability. (54)

5.4. Central limit theorem. Let (X;);>o be a sequence ofi.i.d. RVs with finite mean yp and variance
0?. Let S, = Xj +---+ X,, for n = 1. We have calculated the mean and variance of the sample mean
Suln:

E[S,/n]l=pu, Var(S,/n)= a?ln. (55)

Since Var(S,/n) — 0 as n — oo, we expect the sequence of RVs S,,/n to converge its mean p in
probability.

Central limit theorem is a limit theorem for the sample mean with different regime, namely, it
describes the ‘fluctuation’ of the sample mean around its expectation, as n — co. For this purpose,
we need to standardize the sample mean so that the mean is zero and variance is unit. Namely, let

_Spln—-p _ Sp—np

n— ’ 56
olvn ovn (56)
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so that
E(Z,] =0, Var(Z,)=1. (57)

Since the variance is kept at 1, we should not expect the sequence of RVs (Z,),>¢ converge to
some constant in probability, as in the law of large number situation. Instead, Z; should converge
to some other RV, if it ever converges in some sense. Central limit theorem states that Z,, converges
to the standard normal RV Z ~ N(0,1) ‘in distribution.

Definition 5.20. Let (X};),=>1 be as sequence of RVs. We say X, converges to a RV X in distribution,
in which case we denote X;,, = X as n — oo, when the CDF of X, converges to that of X, that is,

lim P(X, <x)=P(X <x) (58)
n—o0
forall x e R at whichP(X < t) is continuous at t = x.

Let us state the central limit theorem (Theorem 5.3) here with the above notion of convergence
in distribution.

Theorem 5.21 (CLT). Let (X)i>1 bei.i.d. RVs and let S, = Z:l Xi, n=1. SupposeE[X]] < oo and
E[X?] = 0% < oco. Let Z ~ N(0,1) be a standard normal RV and define
Z, = Sn—un _ Sn/n—,u.

ovn olvn

Then Z,, converges to Z as n — oo in distribution.

(59)

Proof. First notice that we can assume E[X;] = 0 without loss of generality (why?). Then o? =
Var(X;) = [E[Xlz] —E[X;]?% = [E[Xlz]. Our proof is based on computing moment generating function
of Z,,, and we will show that this converges to the MGF of the standard normal. (This is why we
learned moment generating function.)

Since the increments X;’s are i.i.d., we have

Ele’S] = E[e"1]E[e!X2]---E[e'X"] = E[e'X1]". (60)

Since we are assuming E[X;] = 0 and [E(Xlz) < 0o, we have

o2
Ele'M] =1+ ?tz +0(13), 61)
where O(#%) contains the rest of terms of order 7 > 3. Hence
2 n
E[e'S"] = (1+%t2+0(t3)) . 62)
This yields
[E[etZ"] — [E[etS,,/(U\/ﬁ)] — [E[e(t/U\/ﬁ)Sn] (63)
2 .
= (1+—+O(n_3/2)) . (64)
2n
Recall that
t?‘ " 2
lim (1+—) =el'2 =E[e'?]. (65)
n—oo 2n

Since the O(n~3/%) term vanishes as n — oo, this shows that E[e‘4"] — E[e'4] as n — oo. Since
MGFs determine distribution of RVs (see Theorem 4.14 (ii) in Note 4), it follows that the CDF of Z,
converges to that of Z. g

As a typical application of CLT, we can approximate Poisson(nA) and Binomial(#, p) variables
by normal RVs.
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Exercise 5.22. Let (X,);>1 be a sequence of i.i.d. Poisson(1) RVs. Let S;, = X; +--- + X,.

(i) Let Z, = (S, —nA)/vnA. Show that as n — oo, Z,, converges to the standard normal RV Z ~
N(0,1) in distribution.

(ii) Conclude that if Y;, ~ Poisson(nA), then

Inond 4 No. (66)
vn
(iii) From (ii) deduce that we have the following approximation
P(Ynsx):IP(st_n/l) (67)
vnl

which becomes more accurate as n — oo.

Exercise 5.23. Let (X;,);>1 be a sequence ofi.i.d. Bernoulli(p) RVs. Let S;; = X1 +--- + Xj,.
() LetZ,=(S,—n p)/\/m . Show that as n — oo, Z;, converges to the standard normal RV
Z ~ N(0,1) in distribution.
(ii) Conclude thatif Y;, ~ Binomial(n, p), then
n—np
Vnp(-p)

(iii) From (ii), deduce that have the following approximation

< M) 69)

vnrp(l-p) ’

= Z ~N(0,1). (68)

P(Y,<x)~P

which becomes more accurate as n — oo.

Example 5.24 (Polling revisited). Let (X,);>1 be a sequence of i.i.d. Bernoulli(p) RVs. Denote
Pn= n (X +---+ X,,). In Exercise 5.13, we used Chebyshef’s inequality to deduce that
P(p, - pl <0.01) =0.95 (70)

whenever n = 50,000. In this example, we will use CLT to improve this lower bound on 7.
First, from Exercise 5.23, it is immediate to deduce the following convergence in distribution

Pn—p

vprpl-p)in

= Z~N(0,1). (71)

Hence for any € > 0, we have

P(1pn- IP( < evin ) (72)
\/p(l p)/n Vpd-p)
zlP( <2£\/ﬁ) (73)
p(l p)/n
~P(1Zl <2evn)=2P(0< Z <2eVn), (74)

where for the inequality we have used the fact that p(1—-p) <1/4forall 0 < p < 1. The last expres-
sion is at least 0.95 if and only if

P(0 < Z <2evn) =0.475. (75)

From the table of standard normal distribution, we know that P(0 < Z < 1.96) = 0.475. Hence (75)
holds if and only if 2ey/n = 1.96, or equivalently,

(0.98)2
n=|—1. (76)
&

For instance, € = 0.01 gives n = 9604. This is a drastic improvement from rn = 50,000 via Chebyshef.
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Exercise 5.25. Let X3, Y1, -+, X, Yy, beii.d. Uniform([0,1]) RVs. Let

X4+ Xp) = (Y] 4+ Yy,
w,_ & )n(1 ) -

Find a numerical approximation to the quantity

P(|Wo —E[Wog]| < 0.001). (78)

5.5. The SLLN and convergence with probability 1. Let (X},),>; be i.i.d. RVs with finite mean
E[X;] = uand let S, = X; +--- + X, for all n = 1. The weak law of large numbers states that the
sample mean S,/ n converges to u in probability, that is,

>5):0 Ve >0. (79)

On the other hand, the Strong Law of Large Numbers (SLLN) tells us that a similar statement holds
where the limit is inside the probability bracket. Namely,
>e):0 Ve >0. (80)

Sn
n.U

If we view the limit on the left hand side as a RV, then (80) in fact states that this limit RV is 0 with
probability 1:

IP( lim

n—oo

.| Sn
P|lim [——-pu|[=0|=1. (81)
n—oo| n
This is equivalent to the following familiar form of SLLN in Theorem 5.2:
S
[P’(lim —n:,u):L (82)
n—oo n

Definition 5.26. Let (X,),>1 be a sequence of RVs and let a be a real number. We say that X,, con-
verges to a with probability 1 if

P(lim Xn:a)zl. 83)

n—oo

Exercise 5.27. Let (X,;) =1 be a sequence of RVs and let a be a real number. Suppose X;, converges
to a with probability 1.

(i) Show that
P(lim IXn—a|S€):1 Ve > 0. 84)
n—oo

(ii) Fixe > 0. Let Ay be the event that | X;, — a| < € for all n = k. Show that A; € A, <--- and

o0
P(r}g&m—mss)sp glAk . 85)
(iii) Show that for each € > 0,
oo
lim P (X, —al<¢&) > lim P(A,) =P| ] Ag zlP(lim |Xn—a|s.s):1. 86)
n—o00 n—oo k:1 n—o0

Conclude that X;, — a in probability.

Example 5.28. In this example, we will see that convergence in probability does not necessarily
imply convergence with probability 1. Define a sequence of RVs (X;),>1 as follows. Let X; =
1, and X» ~ Uniform({2,3}), X3 ~ Uniform({4,5,6}), and so on. In general, X; ~ Uniform{(k —
Dk/2,---,k(k+1)/2} for all k= 2. Let Y, = 1(some X} takes value n). Then note that

PM=1=1, (87)
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P(Yo=1)=P(Y3=1)=1/2, (88)
PY;=1)=P(Y5=1)=P(Ys=1)=1/3, (89)
and so on. Hence it is clear that lim,,_.o, ’(Y;, = 1) = 0. Since Y}, is an indicator variable, this yields

that lim,_.ooP(|Y, — 0| > &) = 0 for all € > 0, that is, Y,, converges to 0 in probability. However,
always infinitely many Y},’s take value 1, so Y;,, cannot converge to 0 with probability 1.

Exercise 5.28 (A simple fact from analysis). Let (a,),=0 be a sequence of real numbers such that

29, ap<oo. Let S, =aj +---+ayforall n > 1. Show that

lim a, =lim(S,, — S;-1) = lim S,,— lim S, =0. (90)
n—oo n— n—oo n—oo

A typical tool for proving convergence with probability 1 is the following.

Proposition 5.29 (Borel-Cantelli lemma). Let (X,),>1 be a sequence of nonnegative RVs such that
252 E[X,] <oo. Then X, — 0 as n — oo with probability 1.

Proof. By Fubini’s theorem (viewing summation as a discrete integral) or applying monotone con-
vergence theorem, we get

o0 o0
[E[an =Y E[X,] <oo. 91)
n=1 n=1
It follows that P (¥ | X,, <o) = 1. By Proposition 5.28, we have
(e.0)
1:P(§1Xn<oo)snm(r}ggoxn=0). 92)
Since the last expression is at most 1, we conclude that P (lim;_., X;; = 0) = 1. ]

Now we prove the strong law of large numbers. The proof of full statement (Theorem 5.2)
with finite second moment assumption has extra technicality, so here we prove the result under a
stronger assumption of finite fourth moment.

Theorem 5.30 (SLLN with fourth moment). Let(X,),>1 be asequence of i.i.d. RVs such that[E[X,‘,ll] <
oo. LetS;, = X1 +---+ Xy, foralln=1. Then S, /n converges to E[ X;] with probability 1.

Proof. Our aim is to show that
(e8]
E[(Sn/m)*] < 0. (93)
n=1
Then by Borel-Cantelli lemma, (S, /n)* converges to 0 with probability 1. Hence S,,/n converges
to 0 with probability 1, as desired.
For a preparation, we first verify that we have finite first and second moments for X;. It is easy
to verify the inequality | x| < 1 + x* for all x € R, so we have

E[lX11] < 1+E[X}] < co. (94)

Hence E[X1] exists. By shifting, we may assume that E[X;] = 0. Similarly, it holds that x? < ¢+ x*
for all x € Rif ¢ > 0 is large enough. Hence E[X?] < co.
Note that
E[Sy] =E

=E Y OXiXiXeXe|= ) E[XiXjXeX/]. (95)

1<i,j,k,{<n 1<i,j,k,{<n

(£

Note that by independence and the assumption that E[X;] = 0, E[X; X; Xy X,] = 0 if at least one of
the four indices does not repeat. For instance,

E[X: X351 =E[X1]E[X5] =0, (96)
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E[X; X2 X3] = E[X1]E[X2]E[X3] = 0. 97)
Hence by collecting terms based on number of overlaps, we have
B 4
Y E[XiX;XeXe] = Y EIX{1+ (2) Y, EIXFIELX]) (98)
1<i,j,k,f<n i=1 l<i<j<n
= nE[X{]+3n(n— DE[X?)% (99)

Thusforalln=1,
nE[X?]+3n(n-DEX??  n’E[X]]+3n%EIX?)?  ELX]]+3E[X?]
< = .

E[(Sn/m)*] = pr i " (100)
Summing over all n, this gives
(] o0 1
3 El(Sn/m)*] < (ELX{]1+3E[X]]) Y — <oo. (101)
n=1 n=117

Hence by Borell-Cantelli lemma, we conclude that (S, /n)* converges to 0 with probability 1. The
same conclusion holds for S;,/ n. This shows the assertion. O
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