MATH 170B LECTURE NOTE 6: ELEMENTARY STOCHASTIC PROCESSES

HANBAEK LYU

6. HOW CAN WE USE SEQUENCE OF RVS TO MODEL REAL LIFE SITUATIONS?

Say we would like to model the USD price of bitcoin. We could observe the actual price at every
hour and record it by a sequence of real numbers x1, X3, - - - . However, it is more interesting to build
a ‘model’ that could predict the price of bitcoin at time ¢, or at least give some meaningful insight
on how the actual bitcoin price behaves over time. Since there are so many factors affecting its
price at every time, it might be reasonable that its price at time ¢ should be given by a certain RV,
say X;. Then our sequence of predictions would be a sequence of RVs, (X;) ;>¢. This is an example
of what is called a stochastic process. Here ‘process’ means that we are not interested in just a single
RV, that their sequence as a whole: ‘stochastic’ means that the way the RVs evolve in time might
be random.

In this section, we will be studying three elementary stochastic processes: 1) Bernoulli process,
2) Poisson process, and 3) discrete-time Markov chain.

6.1. The Bernoulli processes. Let (X;);>1 be asequence ofi.i.d. Bernoulli(p) variables. This is the
Bernoulli process with parameter p, and that’s it. Considering how simple it is conceptually, we
can actually ask a lot of interesting questions about it.

First we envision this as a model of customers arriving at a register. Suppose a clerk rings a bell
whenever she is done with her current customer or ready to take the next customer. Upon each
bell ring, a customer arrives with probability p or no customer gets there with probability 1 - p,
independently at each time. Then we can think of the meaning of X; as

X =1(a customer arrives at the register after ¢ bell rings). @8

To simplify terminology, let ‘time’ be measured by a nonnegative integer t € Z>(: time ¢ means the
time right after rth bell ring. Here are some of the observables for this process that we are interested
in:

Sn = X1+ -+ X,; = #(customers arriving at the register up to time n) (2)
T; = time that the ith customer arrives. 3)
7; = T; — T;_1 = the inter-arrival time between the i — 1st and ith customer. 4)

We also define 7; = T. See Figure 1 for an illustration.
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FIGURE 1. Tllustration of Bernoulli process. First four customers arrive at times 7 = 2,
T, =6, T3 = 8, and T, = 13. The inter-arrival times are 7; =2, 7o =4, 73 =2, and 74 = 5.
There are S7 = 2 customers up to time ¢ =7.

Exercise 6.1. Let (X;);>) be a Bernoulli process with parameter p.
(i) Show that S,, ~ Binomial(n, p).
(ii) Show that T} ~ Geom(p).
(iii) Show that 7;’s are i.i.d. with distribution Geom(p).
1
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Exercise 6.2 (Independence). Let (X;);>; be a Bernoulli process with parameter p. Show the fol-

lowing.

(i) Let U and V be the number of customers at times ¢ € {1,2,---,5} and ¢ € {6,7,---, 10}, respec-
tively. Show that U and V are independent.

(ii) Let U and V be the first odd and even time that a customer arrives, respectively. Show that U
and V are independent.

(iii) Let S5 be the number of customers up to time ¢ = 5 and let 73 = T3 — T, be the inter-arrival
time between the second and third customers. Are Ss and 73 independent?

Let (X{)s=1 be a Bernoulli process with parameter p. If we discard the first 5 observations and
start the process at time ¢ = 6, then the new process (X;);>¢ is still a Bernoulli process with param-
eter p. Moreover, the new process is independent on the past RVs Xj, X»,:--, X5. The following
exercise generalizes this observation.

Exercise 6.3. Let (X;);>1 be a Bernoulli process with parameter p. Show the following.

(i) (Renewal property of Bernoulli RV) For any integer k = 1, (X;) >k is a Bernoulli process with
parameter p and it is independent from X3, X, -+, X_1.

(ii) (Memoryless property of Geometric RV) For any integer k > 1, let T be the first time that a
customer arrives after time ¢ = k. Show that T — k ~ Geom(p) and it is independent from
X1, X, , Xg. (hint: use part (i))

Exercise 6.4 (Alternative definition of Bernoulli process). In this exercise, we show that the Bernoulli
processes can be characterized in terms of their inter-arrival times. Let (7;) x>0 be a sequence of
ii.d. Geom(p) variables. Define a sequence (X;);>¢ of indicator RVs by

X;=1(t1+---+ 71 = t forsome k= 1). (5)

(i) Show that X; ~ Bernoulli(p).

(i) Use the memoryless property of Geometric RVs to show show that X, ~ Bernoulli(p) and that
X» is independent of Xj.

(iii) Use the memoryless property of Geometric RVs to show show that X; ~ Bernoulli(p) and that
X; isindependent of Xi,---, X;_1.

(iv) Conclude that (X;) >0 is @ Bernoulli process with parameter p.

Example 6.5 (Renewal property at arandom time). Let (X;);>; be a Bernoulli process with param-
eter p. Suppose N is the first time that we see two consecutive customers, that is,

N=min{k=2|X;_; = X = 1}. 6)

Then what is the probability P(Xy+1 = Xny+2 = 0) that no customers arrive at times t = N+1and ¢ =
N +2? Intuitively, what's happening after time ¢ = N should be independent from what happened
up to time ¢ = N, so we should have P(Xy+; = Xni2=0) = (1 - pz). However, this is not entirely
obvious since N is a random time.
Observe that the probability P(Xn+1 = Xn+2 = 0) depends on more than two source of random-
ness: N, Xy+1, and Xy+2. Our principle to handle this kind of situation was to use conditioning:
(e, 0)

P(Xn+1=Xn+2=0)= ) P(Xpi1=Xp2=0|N=nP(N =n) (7

n=1

P(Xn+1 = Xpus2 =0P(N=n) (8)

1-p’P(N=n=01-p)* Y P(N=n)=1-p)> 9)

n=1

(e,0)
2
n=1
o0
2
n=1
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Note that for the second equality we have used the renewal property of the Bernoulli process,
namely, (X;)>n+1 is a Bernoulli process with parameter p that is independent of X3, -+, X, and
the fact that the event {N = n} is completely determined by the RVs Xj, -+, Xj,.

Example 6.6 (Splitting and merging of Bernoulli processes). Let (X;);>1 be a Bernoulli process
with parameter p. Let us flip an independent probability g € [0, 1] coin at every ¢, and define

Y; = X;1(coin lands heads) (10)
Z; = X;1(coin lands tails). an

Moreover, we have
Xe=Ye+ Zs. (12)

Note that (Y;)s>1 and (Z;);>) are also Bernoulli processes with parameters pg and p(1 — g), re-
spectively. In other words, we splitted the Bernoulli process (X;);>; with parameter p into two
Bernoulli processes with parameters pg and p(1 — g). However, note that the processes Y; and Z;
are not independent.

Conversely, let (Y;);>1 and (Z;) =1 be independent Bernoulli processes with parameters p and
g, respectively. Is it possible to merge them into a single Bernoulli process? Indeed, we define

XtZI(YtZIOI thl). (13)

ThenP(X;=1)=1-P(Y;=0P(Z;=0=1-(1-p)(1-q) = p+qg— pq. By independence, X; is a
Bernoulli process with parameter p + g — pqg.

Let 7; ~ Geom(p) for i = 0 and let N ~ Geom(g). Suppose all RVs are independent. Let Y =
Z;cvzl Tk. In Exercise 4.24, we have shown that Y ~ Geom(pg) using MGFs. In the following exer-
cise, we show this by using splitting of Bernoulli processes.

Exercise 6.7 (Sum of geometric number of geometric RVs). Let (X;);>0 be Bernoulli process of

parameter p. Give each ball color Blue and Red independently with probability g and 1 — g, re-

spectively. Let X2 = 1(there is a blue ball in box 7).

(i) Show that (XtB )¢=1 is a Bernoulli process of parameter pqg.

(ii) Let TIB be the location of first blue ball. Show that TlB ~ Geom(pq).

(iii) Let N denote the total number of balls (blue or red) in the first TIB boxes. Show that N ~
Geom(q).

(iv) Let Tk be the location of kth ball, and let 7 = T} — T—,. Show that 7 ’s are i.i.d. Geom(p) RVs
and they are independent of N. Lastly, show the identity

TB = 3
U= Tk (14)
k=1

Example 6.8 (Applying limit theorems to BP). Let (X;);>; be a Bernoulli process with parameter
p. Let Ty be the the smallest integer m such that X; +--- + X;;, = k, that is, the location of kth ball.
Lett; =T;— T;_; for i =2 and 7¢ = T} be the inter-arrival times. Then

Te=T1+(Tr-T))+(T3-To) +-++ (T — Tg-1) (15)
=TI+ To+ + Tk (16)
Note that the 7;’s are i.i.d. Geom(p) variables. Hence we can apply all limit theorems to T} to

bound/approximate probabilities associated to it.
To begin, recall that E(7;) = 1/p and Var(z;) = (1 - p)/ p? < co. Hence

1-pk
p*

E(Tw) = k/p, Var(Ty) = 17)
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If we apply SLLN to T}, we conclude that

T 1
P[lim —=—]=1. (18)
k—oo k p
So theline y = x/p is the ‘best fitting line’ that explains the data points (k, T¢) (in the sense of linear
regression). So we know that 1/p is a very good guess for T}/ k, which becomes more accurate as
k — oo.
On the other hand, CLT describes how the sample mean T}/ k fluctuates around its mean 1/p
as k — oo. The theorem says that as k — oo,

Ty — k/p
Vky/ (- p)/p?
What is this statement good for?
Lets take a concrete example by saying p = 1/2 and k = 100. Then E(T790) = 200 and Var(T1go) =
200. Hence we expect the probability P(T}. = 250) to be very small. For this kind of tail probability

estimation, we so far have three devices: Markov’s and Chebyshef’s inequality, and CLT itself.
First, Markov says

= Z ~N(0,1). (19)

Elhoo) _200_4_ g, (20)
250 250 5
So this bound is not very useful here. Next, Chebyshef says
VaI'(Tl()()) _ 200
502 2500

Moreover, an implication of CLT is that the distribution of T becomes more symmetric about its
mean, so the probability on the left hand side is about twice of what we want.

P (Ti9o =250) <

P (| T100 — 200 = 50) <

=0.08. (21)

1
P(Tiop 2 250) = P (1 Ti00 — 200] 2 50) < 0.04. (22)

So Chebyshef gives a much better bound.
But the truth is, the probability P (719 = 250) in fact is extremely small. To see this, we apply
CLT to get

Tigo —200 50
V200  10V2

From the table for standard normal distribution, we know that P(Z = 1.96) = 0.025 and P(Z =
2.58) = 0.005. Hence The probability on the right hand side even smaller than these values.

P (Tho0 =250) =P ~P(Z =3.5355). (23)

6.2. Poisson approximation of BP. In this subsection, we will ‘embed’ the Bernoulli process into
the real line and take a particular limit and get a preliminary form of the Poisson process. The basis
is the following Exponential approximation of geometric distribution and Poisson approximation
of Binomial distribution.

Exercise 6.9 (Exponential approximation of Geometric RV). Let 7 ~ Geom(p). Let p = A/n.
(i) For each real number x = 0, show that
2\l A\ 21
(1——) <P(r"™ > nx) < (1——) , (24)
n n

where for each x = 0, [x] (resp., [x]) denotes the largest (resp., smallest) integer that is at
most (resp., least) x.
(ii) Show that " /n= Exp(A).
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Exercise 6.10 (Poisson approximation of Binomial RV). In this exercise, we will show that Poisson
distribution is obtained as a limit of the Binomial distribution as the number n of trials tend to
infinity while the mean np is kept at constant A. Recall that X ~ Poisson(A) if

Ake=h
P(X=k)= Iz (25)
for all nonnegative integers k = 0. Let Y, ~ Binomial(n, p) with np = A.
(i) Show that
nn-1)(n-2)---(n—-k+1) _
P(Y =k) = p p*a-p)k (26)
n 1 2 k-1) (np)k i
=—(1-=|[1-=|-[1-— 1- 27
n( n)( n) ( n)k!( P) (27)
-2 -5 02
=[1-=||1-=][1-—|=[1-=] . (28)
n n n |k n

(ii) Conclude that Y;, > X as n — oo.
The punchline of this subsection is summarized in the following exercise.

Exercise 6.11. Let (X;)s>0 be a Bernoulli process with parameter p = A/ n.

(i) Let TEC") denote one plus the number of boxes between k—1st and kth ball. Show that as n — oo,

T(n)
k
ko= - = Exp(A). (29)

Ul

(ii) Let S; denote the number of balls in the first k boxes. Show that as n — oo,
S, = Poisson(A). (30)

To give some more context, imagine starting from the first box at the origin and to the right, we
examine each box for 1/7 second. Let

Ty = time that we discover kth ball (31)
T} = time to discover kth ball from k — 1st ball. (32)

Since each box corresponds to 1/n second, we have
TkZ Tx/n and ‘fk:‘[k/l’l. (33)

Hence 6.11 (i) tells us that the time between consecutive balls converges in distribution to Exp (A1)
variable; (ii) tells us that the number of balls we discover in 1 second is asymptotically distributed
as Poisson(A).

6.3. The Poisson processes. An arrival process is a sequence of strictly increasing RVs 0 < T; <
T, < ---. For each integer k = 1, its kth inter-arrival timeis defined by 7 = Ty — Tx—11(k = 2). For a
given arrival process (Tk) k=1, the associated counting process (N(t)) s is defined by

(o, 0)
N(1) = Y 1(T < 1) = #(arrivals up to time ?). (34)
k=1

Note that these three processes (arrival times, inter-arrival times, and counting) determine each
other:

(T k=1 <= Tl g=1 <= (N(D) 0. (35)
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Exercise 6.12. Let (T}) x> be any arrival process and let (N(#)) ;o be its associated counting pro-
cess. Show that these two processes determine each other by the following relation

{T, <t} ={N() =n}. (36)

In words, nth customer arrives by time ¢ if and only if at least n customers arrive up to time ¢.

N
4 Ty
3 T3
2 T,
— N(s) =3
1
T1
0 T, T, T3 s T, t

FIGURE 2. Illustration of a continuous-time arrival process (Ti)r>; and its associated
counting process (N(1));=o. Tx’s denote inter-arrival times. N(f) =3 for T3 < t < Ty.

Now we define Poisson process.

Definition 6.13 (Poisson process). An arrival process (Ty) =1 is a Poisson process of rate A if its
inter-arrival times are i.i.d. Exp(1) RVs.

Exercise 6.14. Let (T%)r>1 be a Poisson process with rate A. Show that E[T] = k/A and Var(Ty) =
k/A?. Furthermore, show that Ty ~ Erlang(k, 1), that is,
Ak gk=1p-Az
E A — 37
f1.(2) *k—1! (37)

The following exercise explains what is ‘Poisson’ about the Poisson process.

Exercise 6.15. Let (Ty)x>1 be a Poisson process with rate A and let (N (t))s>¢ be the associated
counting process. We will show that N(t) ~ Poisson(1¢).

(i) Using the relation {T}, < t} = {N(t) = n} and Exercise 6.14, show that

t )ann—le—lz
P(N(t)=n)=P(T, <1 =f ———dz. (38)
o (n=1)!
(i) Let G(¢) = ‘fn":n(lt)me_/”/m! = P(Poisson(A) = n). Show that
d /lntn—le—lt d
— = = —P(T,, < 1).
at" = "o Tar (=Y 49

Conclude that G(t) = P(T,, < t).
(iii) From (i) and (ii), conclude that N(t) ~ Poisson(A1).

The choice of exponential inter-arrival times is special due to the following ‘memoryless prop-
erty’ of exponential RVs.

Exercise 6.16 (Memoryless property of exponential RV). A continuous positive RV X is say to have
memoryless property if

PX=H+t)=PX=2)P(X=16) Vx,x=0. 40
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(i) Show that (40) is equivalent to
PX=H+6|X=20p)=P(X=1f) Vx,xx=0. 41)

(ii) Show that exponential RVs have memoryless property.
(iii) Suppose X is continuous, positive, and memoryless. Let g(t) = logP(X = f). Show that g is
continuous at 0 and

gx+y)=gx)+g(y) forallx,y=0. (42)

Using the following exercise, conclude that X must be an exponential RV.

Exercise 6.17. Let g : R>y — R be a function with the property that g(x + y) = g(x) + g(y) for all
X,y = 0. Further assume that g is continuous at 0. In this exercise, we will show that g(x) = cx for
some constant c.

(i) Show that g(0) = g(0+0) = g(0) + g(0). Deduce that g(0) =0.
(ii) Show that for all integers n=1, g(n) = ng(1).
(iii) Show that for all integers n,m =1,

ng(l)=gn-1)=glm(n/m)) = mgn/m). (43)

Deduce that for all nonnegative rational numbers r, we have g(r) = rg(1).

(iv) Show that g is continuous.

(v) Let x be nonnegative real number. Let r; be a sequence of rational numbers such that ry — x
as k — oo. By using (iii) and (iv), show that

glx) = g(klim rk) = klim glry) = g(l)klim re=x-g(). (44)

Given a Poisson process, we can restart it at any given time ¢. Then the first arrival time after
t is simply the remaining inter-arrival time after time ¢. By memoryless property of exponential
RVs, we see that this remaining time is also an exponential RV that is independent of what have
happend so far. We will show this in the following proposition. The proof is essentially a Poisson
version of Exercise 6.4.

Proposition 6.18 (Memoryless property of PP). Let (Ty)x=1 be a Poisson process of rate A and let
(N(1))¢=0 be the associated counting process.

(i) Forany t =0, let Z(t) = inf{s > t : N(s) > N(t)} be the first arrival time after time t. Then
Z(t) ~ Exp(Q) and it is independent of the process up to time t.

(ii) Foranys=0, (N(t+s)— N(1)) =0 is the counting process of an independent Poisson process of
rate A, restarted at time s.

Proof. (ii) follows immediately from (i). We show (i). Denote Z = Z(t). We will show that Z is
independent of N(¢) and it has distribution Exp(A1). Since Z depends only on the current inter-
arrival time (see Figure 5), this will show that Z is independent of the process up to time ¢.

For starter, first consider conditioning on the event that N(f) = 0, that is, no arrival occurred by
time ¢. Then by Exercises 6.12 and 6.16,

P(Z=x|N)=0)=P(Z=x|T, > 1) (45)
=P(Ty=x+t|Ty>1) (46)
=P(T; = x)=e M. (47)

Similarly, now suppose N(¢) = n, that is, there have been rn arrivals up to time ¢. Furthermore, we
also assume that the last arrival is at time s, thatis, T, = s < t. Then

PZ=zxIN#t)=n,T,=8) =Py =x+t—8SIN®)=n,T,=29) (48)
=PTrpr1zx+t-Sltp1=2t—5Ty,=25) (49)



8 HANBAEK LYU

N
4 T,
3 T3
t—s VA
2 7,
—
1 - N() =3
0 Ty T, Tz =s t T,

FIGURE 3. Assuming N(f) =3 and T3 = s < ¢, we have Z = 74 — (f — s). By memoryless
property of exponential RV, Z follows Exp(A) on this conditioning.

=PTp1=x+t—S|tp1=t—39) (50)
=P(T,41 = x) =e M. (51)

Hence by iterated expectation,
P(Z 2 x|N(t) = n) =E[P(Z = x| N(t) = n, Ty)] = e . (52)

Since n is arbitrary, this shows that Z is independent of N(#). By using another iterated expecta-
tion, this also shows that Z ~ Exp(A). U

Exercise 6.19 (Sum of independent Poisson RV’s is Poisson). Let (T¢)x>1 be a Poisson process with
rate A and let (N (?));=¢ be the associated counting process. Fix ¢, s = 0.

(i) Use memoryless property to show that N(#) and N(t+ s) — N(t) are independent Poisson RVs
of rates A¢ and As.

(ii) Note that the total number of arrivals during [0, ¢+ s] can be divided into the number of arrivals
during [0, f] and [t, ¢ + s]. Conclude that if X ~ Poisson(A¢) and Y ~ Poisson(As) and if they
are independent, then X + Y € Poisson(A(f + s)).

6.4. Splitting and merging of Poisson process. Recall the splitting of Bernoulli processes: If balls
are given by BP(p) and we color each ball with blue and red independently with probability g and
1 — g, respectively, then the process restricted on blue and red balls are BP(pg) and BP(p(1 — ¢)),
respectively. Considering blue balls process is sometimes called ‘thinning’ of the original BP. The
same construction naturally works for Poisson processes as well. If customers arrive at a bank
according to PP(1) and if each one is male or female independently with probability g and 1— g,
then the ‘thinned out’ process of only male customers is a PP(g); the process of female customers
isa PP((1 - gq)A).

N (1)
A
Ll
N(b) | p Rate 4, = pA
A
L
Rate A 1-p N, (t)
>

Rate 4, = (1 —p)A

FIGURE 4. Splitting of Poisson process N(#) of rate A according to an independent
Bernoulli process of parameter p.
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The reverse operation of splitting a given PP into two complementary PPs is call the ‘merging’.
Namely, imagine customers arrive at a register through two doors A and B independently accord-
ing to PPs of rates 14 and Ap, respectively. Then the combined arrival process of entire customers
is again a PP of the added rate.

Ny (1)

Rate 1; N(t)
or

A
L
N,(t) RateA =1, + 1,
> J
Rate 1,

FIGURE 5. Merging two independent Poisson processes of rates 1; and 1, gives a new
Poisson process of rate A1 + 1,.

Exercise 6.20 (Excerpted from [ ). Transmitters A and B independently send messages to a
single receiver according to Poisson processes with rates 14 = 3 and Ap = 4 (messages per min).
Each message (regardless of the source) contains a random number of words with PMF

P(1 word) =2/6, [P(2words)=3/6, [P(3words)=1/6, (53)
which is independent of everything else.
(i) Find P(total nine messages are recieved during [0, £]).
(ii) Let M(¢) be the total number of words received during [0, ¢]. Find E[M (¢)].
(iii) Let T be the first time that the receiver receives exactly three messages consisting of three

words from transmitter A. Find distribution of T.
(iv) Compute P(exactly seven messages out of the first ten messages are from A).

Exercise 6.21 (Order statistics of i.i.d. Exp RVs). One hundred light bulbs are simultaneously put

on a life test. Suppose the lifetimes of the individual light bulbs are independent Exp(A1) RVs. Let

Ty be the kth time that some light bulb fails. We will find the distribution of T} using Poisson

processes.

(i) Think of T; as the first arrival time among 100 independent PPs of rate A. Show that T} ~
Exp(100A).

(ii) After time T, there are 99 remaining light bulbs. Using memoryless property, argue that 7o — T}
is the first arrival time of 99 independent PPs of rate A. Show that T> — T; ~ Exp(991) and
that T» — T; is independent of T;.

(iii) Asin the coupon collector problem, we break up

Te=T1+T2++Tk, (54)

where 7; = T; — T;—; with 7; = T;. Note that 7; is the waiting time between i — 1st and ith
failures. Using the ideas in (i) and (ii), show that 7;’s are independent and 7; ~ Exp((100 —
i)A). Deduce that

E[Tk]:l(i+i+...+;)’ (55)

A\100 99 (100—k+1)

Var[Tk]:i(L+L+---+; . (56)
A2 11002 992 (100 — k + 1)?

(iv) Let X3, Xp,-+, X100 be i.i.d. Exp(A) variables. Let X(;) < X() < -+ < X(100) be their order statis-
tics, thatis, Xy is the ith smallest among the X;’s. Show that X4 has the same distribution
as Ty, the kth time some light bulb fails. (So we know what it is from the previous parts.)

In the next two exercises, we rigorously justify splitting and merging of Poisson processes.
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Exercise 6.22 (Splitting of PP). Let (N(f)) >0 be the counting process of a PP(1), and let (X) x>0 be
an independent BP(p). We define two counting processes (N; (1)) ;=0 and (N2 (?)) ;=0 by

(e.0)

Ni(t) = 1(Tk < )1(Xg = 1) = #(arrivals with coin landing on heads up to time ?), (57)
k=1
(e 0)

No(0) =) (T < 0)1(Xj = 0) = #(arrivals with coin landing on heads up to time ?). (58)
k=1

In this exercise, we show that (N (1)) ;=0 ~ PP(pA) and (N2(£)) =0 ~ PP((1 - p)A).

(i) Lett and T;CD be the kth inter-arrival times of the counting processes (IN(t)) ;=0 and (N1 (?)) to-
Let Y be the location of kth ball for the BP (X{) ;>¢. Show that

) Y
=Y 1. (59)
i=1
(ii) Show that
1 &
=3 1. (60)
k=Y1+1
(iii) Show that in general,
1 e
T;C) = > 1 61)
k=Yp_1+1

(iv) Recall that Y; — Yj_;’s are i.i.d. Geom(p) RVs. Use Exercise 4.23 and (iii) to deduce that
r}cl)’s are i.i.d. Exp(pA) RVs. Conclude that (IV;(¢)) ~ PP(pA). (The same argument shows

(N2(8) =0 ~PP((1 = p)A).)

Exercise 6.23 (Merging of independent PPs). Let (N;(#));>0 and (N2(1)) ;>0 be the counting pro-
cesses of two independent PPs of rates 1; and A,, respectively. Define a new counting process
(N() =0 by
N(t) = N1(8) + No(1). (62)
In this exercise, we show that (N (7)) ;>0 ~ PP(pA).
(i) Let T;CD, T;CZ), and 1 be the kth inter-arrival times of the counting processes (N1 (£)) s=0, (N2(#)) t=0,
and (N(£)) ;0. Show that 71 = min(TiU,ng)). Conclude that 71 ~ Exp(1; + A2).
(ii) Let Ty be the kth arrival time for the joint process (IN(f)):=0. Use memoryless property of PP
to deduce that N} and N, restarted from time T} are independent PPs of rates 1; and A,

which are also independent from the past (before time f).
(iii) From (ii), show that

T+1 = Min(7y,72), (63)

where 7 is the waiting time for the first arrival after time T} for Nj, and similarly for
T,. Deduce that 74,1 ~ Exp(1; + A2) and it is independent of 7;,---,7¢. Conclude that
(N(8) =0 ~PP(A1 + Ap).
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6.5. Poisson process in terms of counting process*. This subsection is optional. We have defined
Poisson process in terms of the inter-arrival times of an arrival process. In this subsection, we look
at alternative definitions based on its counting process.

Definition 6.24 (Def of PP:countingl). A counting process (N(t)):=o is said to be a Poisson process
with rate A > 0 if it has the following properties

(I N(@)=0;
(ii) (Independent increment) Forany t,s =0, N(t+ s) — N(t) is independent of (N (1)) y<;;
(iii) Foranyt,s=0, N(t+s)— N(t) ~ Poisson(As).

Proposition 6.25. The two definitions of Poisson process in Definitions 6.13 and 6.24 are equivalent.

Proof. Let (N (1)) =0 be a counting process with the properties (i)-(iii) in Def 6.24. We want to show
that the inter-arrival times are i.i.d. Exp(A) RVs. This is the content of Exercise 6.26.

Conversely, let (Ty)x>1 be an arrival process. Suppose its inter-arrival times are i.i.d. Exp(A)
RVs. Let (N(#))» be its associated counting process. Clearly N(0) = 0 by definition so (i) holds. By
the memoryless property (Proposition 6.18), (IN,) ;= is the counting process of a Poisson process
of rate A (in the sense of Def 6.13) that is independent of the past (N(u)),<;. In particular, the
increment N(t+s)— N(t) during time interval [, ¢+ s] is independent of the past process (N (1)) <,
so (ii) holds. Lastly, the increment N (¢ + s) — N(t) has the same distribution as N(s) = N(s) — N(0)
by the memoryless property. Since Exercise 6.15 shows that N(¢) ~ Poisson(At), we have (iii). [

Exercise 6.26. Let (N(1));>0 be a counting process with the properties (i)-(iii) in Def 6.24. Let
Ty =inf{u = 0| N(u) = k} be the kth arrival time and let 7. = T} — T_; be the kth inter-arrival time.

(i) Use conditioning on T} to show that for any k = 1 and s = 0, N(Ty + s) — N(T}) is independent
of (N(1) u<T-

(ii) Let Z(t) =inf{u = t| N(u) > N(1)} be the first arrival time after time ¢. Show that Z(¢) ~ Exp(1)
forall t=0.

(iii) Use (ii) and conditioning on Tj_; to show that 7, ~ Exp(A) for all k= 1.

Next, we give yet another definition of Poisson process in terms of the asymptotic properties of
its counting process. For this, we need something called the ‘small-0’ notation. We say a function
f (1) is of order o(t) or write f(f) = o(¢) if

lim M =0. (64)
t—0

Definition 6.27 (Def of PP:counting2). A counting process (N(t)):=o is said to be a Poisson process
with rate A > 0 if it satisfies the following conditions:

(i N()=0;

@ii) P(N()=0)=1-At+o0(1);

(iii) P(N(5)=1)=At+o0(1);

(iv) P(N(1) =2) =o(1);

(v) (Independent increment) For any t,s =0, N(t + s) — N(¢) is independent of (N(u)) y<¢;

(vi) (Stationary increment) For any t,s = 0, the distribution of N(t + s) — N(t) does not depend on t.

It is easy to see that our usual definition of Poisson process in Definition 6.13 satisfies the prop-
erties (i)-(vi) above.

Proposition 6.24. Let (Ti)x=1 be a Poisson process of rate A (in the sense of Definition 6.13) and
let (N(1))¢=0 be its associated counting process. Then (N(t))=o is a Poisson process in the sense of
Definition 6.24.
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Proof. There is no arrival at time ¢ = 0 so N(0) = 0. We know that N(#) ~ Poisson(At) for each >0
from Exercise 6.15. Also note that

e M=1-At+o0(0) (65)
for all £ > 0. Hence
P(N(t) =n) = e‘“mn—t? (66)
=1-At+o0(1) (A5 . (67)
n!
So plugging in n = 0 and 1 gives (ii) and (iii). For (iv), we use (ii) and (iii) to get
P(IN(t)=2)=1-P(NO) <1 =1-(1-At+0(t)— (Art+o(1) = o(1). (68)

Lastly, (v) and (iv) follows from the memoryless property of Poisson process (Proposition 6.18). [J
Next, we consider the converse implication. We will break this into several exercises.

Exercise 6.28. Let (IN(f)):>0 is the Poisson process with rate A > 0 in the sense of Definition 6.24.
In this exercise, we will show that P(N (1) = 0) = e A1,

(i) Use independent/stationary increment properties to show that

P(N(t+h)=0)=P(N(t) =0,N(t+h)—N(t) =0) (69)
=P(N()=0)P(N(t+h)—N(t)=0) (70)
=P(N()=0)1—-Ah+ o(h)). (71)

(ii) Denote fy(t) =P(N(f) =0). Use (i) to show that
fo(t+h)— fo(h) =(—/1+Lh))f0(t). 72)

h h
By taking limit as i — 0, show that f () satisfies the following differential equation

dfo(t) B

T =M. (73)

(iii) Conclude that P(N(#) =0) = e~
Next, we generalize the ideas used in the previous exercise to compute the distribution of N(%).

Exercise 6.29. Let (IN(1));>0 is the Poisson process with rate A > 0 in the sense of Definition 6.24.
Denote f,(t) =P(N(t) = n) foreach n = 0.

(i) Show that

P(N(H)=n-2,N(t+h)=n)<P(N(t+h)—-N(h) =2). (74)
Conclude that

P(N(t)<n—-2, N(t+h)=n)=o(h). (75)

(ii) Use (i) and independent/stationary increment properties to show that
fult+h) =P(N(t+h) = n) =P(N(t) = n, N(t + h) - N(t) = 0) (76)
+P(N(H)=n-1,N(t+h)—N(t)=1) (77)
+P(N(t)<n—-2,N(t+h)=n) (78)
= (A =Ah+0(M) + fu-1(O(Ah + 0(h) + o(h). (79)

(iii) Use (ii) to show that the following differential equation holds:
dfu(®)

dr =—Afn(®)+Afr1(0). (80)
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(iv) By multiplying the integrating factor u(t) = e** to (80), show that
(M fu(1) = A€M 1 (1), (81)

Use the initial condition f},(0) = P(N(0) = n) = 0 to derive the recursive equation
t
fa(t) = Ae M f eAsfn_1(s)ds. (82)
0

(v) Use induction to conclude that f;,(f) = (1 n"erMnl.
(vi) Conclude thatforall £,s=0and n =0,

N(t+5)— N(s) ~Poisson(Art). (83)

6.6. Discrete-time Markov chains. In this sebsection, we change our gear from arrival processes
to Markov processes. Roughly speaking, Markov processes are used to model temporally changing
systems where future state only depends on the current state. For instance, if the price of bitcoin
tomorrow depends only on its price today, then bitcoin price can be modeled as a Markov process.
(Of course, the entire history of price often affects decisions of buyers/sellers so it may not be a
realistic assumption.)

Even through Markov processes can be defined in vast generality, we concentrate on the sim-
plest setting where the state and time are both discrete. Let Q = {1,2,---, m} be a finite set, which
we call the state space. Consider a sequence (X;) ;¢ of Q-valued RVs, which we call a chain. We call
the value of X; the state of the chain at time ¢. In order to narrow down the way the chain (X;) />0
behaves, we introduce the following properties:

(i) (Markov property) The distribution of X;.; given the history Xy, Xj,---, X; depends only on X;.
That is,
P(Xe+1 =kl Xe = jo, Xe-1 = je-1,+, X1 = j1) = P(Xer1 = k1 Xi = jo). (84)
(ii) (Time-homogeneity) The transition probabilities
pPij=PXe1=Jj1Xe=1) ,jeQ (85)
do not depend on .

When the chain (X;) ;¢ satisfies the above two properties, we say it is a (discrete-time and time-
homogeneous) Markov chain. Note that the Markov property (i) is a kind of a one-step complica-
tion of the memoryless property: We now forget all the past but we do remember the present. On
the other hand, time-homogeneity (ii) states that the behavior of the chain does not depend on
time. In this case, we define the transition matrix P to be the m x m matrix of transition probabil-
ities:

P11 P12 - Pim
P21 P22 - P2m
P=(pijisijsm = . . (86)
Pmi Pm2 - Pmm
Finally, since the state X; of the chain is a RV, we represent its PMF via a row vector
r; = [P(X;=1),P(X;=2),--,P(X; = m)]. (87)

Example 6.31. Let Q = {1,2} and let (X;);>¢ be a Markov chain on Q with the following transition
matrix

P pi2
p21 p22
We can also represent this Markov chain pictorially as in Figure 8, which is called the ‘state space
diagram’ of the chain (X¢) ;>0.

. (88)




14 HANBAEK LYU

P12

ri G @ @ ) b

P21

FIGURE 6. State space diagram of a 2-state Markov chain

For some concrete example, suppose

p11=0.2, p12=0.8, p21=0.6, prp=04 (89)
If the initial state of the chain Xj is 1, then
PXi=D=PX;=11Xo=DP(Xo =1 +P(X; =1| Xy =2)P(Xp=2) (90)
=P(X;=1|Xo=1)=p;1 =02 (91)
and similarly,
P(X;=2)=P(X;=2|Xo=DPXo =D +P(X; =2| X =2)P(Xp =2) (92)
=P(X;=2|Xy=1)=p12=0.8. (93)
Also we can compute the distribution of X,. For example,
PXo=1)=PX=1|X =DPX; =D +P(X2=1|X; =2)P(X; =2) (94)
=pnlPXg =1 + p21P(X5 =2) (95)
=0.2-0.2+0.6-0.8=0.04+0.48 = 0.52. (96)

In general, the distribution of X;;; can be computed from that of X; via a simple linear algebra.
Note thatfori=1,2,

PXer1 =0 =PXe1 = i1 Xy = DP(X; = 1) + P(Xpy1 = i1 X = 2)P(X; = 2) 97)
=piP(Xy=1) + piP(X; =2). (98)

This can be written as

. (99)
p21  p22

That is, if we represent the distribution of X; as a row vector, then the distribution of X, is given

by multiplying the transition matrix P to the left.

[P(Xta1 = 2), P(Xp11 = 2)] = [P(Xp41 =2), P(Xps1 = 2)] [’”“ P12

We generalize this observation in the following exercise.
Exercise 6.32. Let (X;);>0 be a Markov chain on state space Q2 = {1,2,---, m} with transition matrix
P =(pijh<ijsm- Letr; = [P(X; =1),---,P(X; = m)] denote the row vector of the distribution of X;.
(i) Show that for each i€ Q,
m
P(Xp1 =0 =) pjiP(X; = j). (100)
j=1
(ii) Show that for each ¢ =0,
| R} :rtP. (101)
(iii) Show by induction that for each ¢ =0,
r; =roP’. (102)

Exercise 6.33. Let Q = {1,2} and let (X;);>¢ be a Markov chain on Q with the following transition
matrix

(103)

02 0.8
P _[0.6 0.4]'



MATH 170B LECTURE NOTE 6 15

(i) Show that P admits the following diagonalization

-1
1 —-4/3] 1 0 1 -4/3
P_[l 1 ||lo -2/5 [1 1 ] ' (108)
(ii) Show that P! admits the following diagonalization
-1
1 —-4/3]]1 0 1 -4/3
r_
=l ] 0 (—2/5)f] 11 ] ' (105)
(iii) Let r; denote the row vector of distribution of X;. Use Exercise 6.32 to deduce that
-1
1 —-4/3]]1 0 1 -4/3
fe=toly [0 (—2/5)f]1 1 ] ' (106)
Also show that
. 3/7 417
}ngt—ro 3/7 a7 =[3/7,4/7]. (107)

Conclude that regardless of the initial distribution ry, the distribution of the Markov chain
(X1) =0 converges to [3/7,4/7]. This limiting distribution 7 = [3/7,4/7] is called the station-
ary distribution of the chain (X;) ;>¢.

6.7. Stationary distribution and examples. Let (X;);>9 be a Markov chain on state space Q =
{1,2,---, m} with transition matrix P = (p;)1<j,jsm- If 7 is a distribution on Q such that

n=nP, (108)
then we say r is a stationary distribution of the Markov chain (X;)»o.

Example 6.34. In Exercise 6.33, we have seen that the distribution of the 2-state Markov chain
(X) t=0 with transition matrix

(109)

pufoz o8

0.6 04
converges to i = [3/7,4/7]. Since this is the limiting distribution, it should be invariant under left
multiplication by P. Indeed, one can easily verify

(3/7,4/7] = (3/7,4/7]

0.2 0.8] ‘ (110)

0.6 0.4

Hence 7 is a stationary distribution for the Markov chain (X;) s/>¢. Furthermore, in Exercise 6.33 we
also have shown the uniqueness of stationary distribution. However, this is not always the case.

Example 6.35. Let (X;);>0 be a 2-state Markov chain with transition matrix

1 0
pP= 0 1]. (111)

Then any distribution 7 = [p, 1 — p] is a stationary distribution for the chain (X;) s>o.

In Exercise 6.33, we used diagonalization of the transition matrix to compute the limiting distri-
bution, which must be a stationary distribution. However, we can simply use the definition (108)
to algebraically compute stationary distribution(s). Namely, by taking transpose,

al =pTaT. (112)

Namely, the transpose of any stationary distribution is an eigenvector of PT associated with eigen-
value 1. We record some properties of stationary distributions using some linear algebra stuff.
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Exercise 6.36. Let (X;);>0 be a Markov chain on state space Q2 = {1,2,---, m} with transition matrix

P=(pijisi,jsm-

(i) Show that a distribution 7 on Q is a stationary distribution for the chain (X;) ;>¢ if and only if it
is a left eigenvector of P associated with left eigenvalue 1.

(ii) Show that 1 is a right eigenvalue of P with right eigenvector [1,1,---,1]7.

(iii) Recall that a square matrix and its transpose have the same (right) eigenvalues and corre-
sponding (right) eigenspaces have the same dimension. Show that the Markov chain (X;) ;>
has a unique stationary distribution if any only if [1,1,---,1]” spans the (right) eigenspace
of P associated with (right) eigenvalue 1.

Now we look at some important examples.

Exercise 6.37 (Birth-Death chain). Let Q = {0,1,2,---, N} be the state space. Let (X;);>o be a
Markov chain on Q with transition probabilities
PXi=k+1|X;=k)=p Yo<k<N
P(X;s1=k-11X,=k)=1-p Vi<k<N

(113)
PXi+1=01X;=0)=1-p
P(X¢+1=N|X,=N)=p.
This is called a Birth-Death chain. Its state space diagram is as below.
p P P p
=GO O—0 O —®o
1-p 1-p 1-p 1-p

FIGURE 7. State space diagram of a 5-state Birth-Death chain

(i) Let @ = [mg,m1,--+,7N] be a distribution on Q. Show that 7 is a stationary distribution of the
Birth-Death chain if and only if it satisfy the following ‘balance equation’

prr=1—-p)mis1 0<k<N. (114)

(ii) Let p = p/(1— p). From (ii), deduce that 7 = pkﬂo forall0< k< N.
(iii) Using the normalization condition my+ 71 + -+ 7y, show that mg=1/(1+p + p2 +oe 4 pN).
Conclude that

p* _k _1-p

0<k<N. (115)

Conclude that the Birth-Death chain has a unique stationary distribution given by (115).
In the following example, we will encounter a new concept of ‘absorption’ of Markov chains.

Exercise 6.38 (Gambler’s ruin). Suppose a gambler has fortune of k dolors initially and starts gam-
bling. At each time he wins or loses 1 dolor independently with probability p and 1 — p, respec-
tively. The game ends when his fortune reaches either 0 or N dolors. What is the probability that
he wins N dolors and goes home happy?

We use Markov chains to model his fortune after betting ¢ times. Namely, let Q ={0,1,2,---, N}
be the state space. Let (X;);>0 be a sequence of RVs where X; is the gambler’s fortune after betting
t times. Note that the transition probabilities are similar to that of the Birth-Death chain, except
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the ‘absorbing boundary’ at 0 and N. Namely,
PX1=k+11X;=k)=p Vi<sk<N
PXis1=k|X;=k-1)=1-p Vi<k<N
P(Xt+1=01X;=0)=1
P(X;+1=N|X;=N)=1.

Call the resulting Markov chain (X;) ;¢ the gambler’s chain. Its state space diagram is given below.

(116)

OO0

S ORrrl©

FIGURE 8. State space diagram of a 5-state gambler’s chain

(i) Show that any distribution 7 = [4,0,0,---,0, b] on Q is stationary with respect to the gambler’s
chain. Also show that any stationary distribution of this chain should be of this form.

(ii) Clearly the gambler’s chain eventually visits state 0 or N, and stays at that boundary state
thereafter. This is called absorbtion. Let 7; denote the time until absorbtion starting from
state i:

T, =min{f=0: X; € {0, N}| Xo = i}. (117)

We are going to compute the ‘winning probabilities’: g; := P(X;, = N).
By considering what happens in one step, show that they satisfy the following recursion

{q,-:pqi+1+(1—p)qi_1 Vi<i<N 118)
qo=0, gn=1
(iii) Denote p = (1 — p)/p. Show that
qgit1—q4i=p(gi—qi-1)  V1I<i<N. (119)
Deduce that
Giei—qi=p'(@—dgo)=p'qr  Y1<i<N, (120)
and that
gi=q(A+p+---+ph) Vi<i<N. (121)
(iv)* Conclude that
NN iftp=1/2.
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