
MATH 170B LECTURE NOTE 0: REVIEW OF MATH 170A

HANBAEK LYU

Many things in life are uncertain. Can we ‘measure’ and compare such uncertainty so that it
helps us to make more informed decision? Probability theory provides a systematic way of doing
so.

1. PROBABILITY MEASURE AND PROBABILITY SPACE

We begin with idealizing our situation. Let Ω be a finite set, called sample space. This is the
collection of all possible outcomes that we can observe (think of six sides of a die). We are going
to perform some experiment on Ω, and the outcome could be any subset E of Ω, which we call
an event. Let us denote the collection of all events E ⊆ Ω by 2Ω. A probability measure on Ω is
a function P such that for each event E ⊆ Ω, it assigns a number P(E) ∈ [0,1] and satisfies the
following properties:

(i) P(;) = 0 and P(Ω) = 1.
(ii) If two events E1,E2 ⊆Ω are disjoint, then P(E1 ∪E2) =P(E1)+P(E1).

In words, P(E) is our quantization of how likely it is that the event E occurs out of our experiment.

Exercise 1.1. Let P be a probability measure on sample spaceΩ. Show the following.

(i) Let E = {x1, x2, · · ·xk } ⊆Ω be an event. Then P(E) =∑k
i=1P({xi }) = 1.

(ii)
∑

x∈ΩP({x}) = 1.

IfP is a probability measure on sample spaceΩ, we call the pair (Ω,P) a probability space. This is
our idealized world where we can precisely measure uncertainty of all possible events. Of course,
there could be many (in fact, infinitely many) different probability measures on the same sample
space.

Exercise 1.2 (coin flip). Let Ω= {H ,T } be a sample space. Fix a parameter p ∈ [0,1], and define a
function Pp : 2Ω→ [0,1] by Pp (;) = 0, Pp ({H }) = p, Pp ({T }) = 1−p, Pp ({H ,T }) = 1. Verify that Pp is
a probability measure onΩ for each value of p.

A typical way of constructing a probability measure is to specify how likely it is to see each
individual element inΩ. Namely, let f :Ω→ [0,1] be a function that sums up to 1, i.e.,

∑
x∈Ω f (x) =

1. Define a function P : 2Ω→ [0,1] by

P(E) = ∑
ω∈E

f (ω). (1)

Then this is a probability measure on Ω, and f is called a probability distribution on Ω. For in-
stance, the PMF on {H ,T } we used to define Pp in Exercise 1.2 is f (H) = p and f (T ) = 1−p.

Exercise 1.3. Show that the function P : 2Ω → [0,1] defined in (1) is a probability measure on Ω.
Conversely, show that every probability measure on a finite sample spaceΩ can be defined in this
way.

Remark 1.4 (General probability space). A probability space does not need to be finite, but we
need a more careful definition in that case. For example, if we take Ω to be the unit interval [0,1],
then we have to be careful in deciding which subset E ⊆Ω can be an ‘event’: not every subset ofΩ
can be an event. A proper definition of general probability space is out of the scope of this course.
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2. (DISCRETE) RANDOM VARIABLES

Given a probability space (Ω,P), a random variable (RV) is a real-valued function X :Ω→R. We
can think of it as the outcome of some experiment onΩ (e.g., height of a randomly selected friend).
We often forget the original probability space and specify a RV by is probability mass function
(PMF) fX :R→ [0,1],

fX (x) =P(X = x) =P({ω ∈Ω |X (ω) = x}). (2)

Namely, P(X = x) is the likelihood that the RV X takes value x.

Example 2.1. Say you win $1 if a fair coin lands heads and lose $1 if lands tails. We can set up our
probability space (Ω,P) by Ω = {H ,T } and P = P1/2 as in Exercise 1.2. The RV X : Ω→ R for this
game is X (H) = 1 and X (T ) = −1. The PMF of X is given by fX (1) = P(X = 1) = P({H }) = 1/2 and
likewise fX (−1) = 1/2.

Exercise 2.2. Let (Ω,P) be a probability space and X :Ω→ R be a RV. Show that its PMF fX adds
up to 1, that is, ∑

x
fX (x) = 1, (3)

where the summation runs over all numerical values x that X can take.

There are two useful statistics of a RV to summarize its property. First, if one has to guess the
value of a RV X , what would be the best choice? It is the expectation (or mean) of X , defined as
below:

E(X ) =∑
x

xP(X = x). (4)

Exercise 2.3 (Tail sum formula for expectation). For any RV X taking values on positive integers,
show that

E(X ) =
∞∑

x=1
P(X ≥ x). (5)

Exercise 2.4 (Linearity of expectation). In this exercise, we will show that the expectation of sum
of RVs is the sum of expectation of individual RVs.

(i) Let X and Y be RVs. Show that∑
y
P(X = x,Y = y) =P(X = x). (6)

(ii) Verify the following steps:

E(X +Y ) =∑
z

zP(X +Y = z) (7)

=∑
z

∑
x,y

x+y=z

(x + y)P(X = x, Y = y) (8)

=∑
x,y

(x + y)P(X = x, Y = y) (9)

=∑
x,y

xP(X = x, Y = y)+∑
x,y

yP(X = x, Y = y) (10)

=∑
x

x

(∑
y
P(X = x, y = y)

)
+∑

y
y

(∑
x
P(X = x, Y = y)

)
(11)

=∑
x

xP(X = x)+∑
y

yP(Y = y) (12)

= E(X )+E(Y ). (13)

(iii) Use induction to show that for any RVs X1, X2, · · · , Xn , we have

E(X1 +X2 +·· ·+Xn) = E(X1)+E(X2)+·· ·+E(Xn). (14)
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On the other hand, say you play two different games where in the first game, you win or lose
$1 depending on a fair coin flip, and in the second game, you win or lose $10. In both games,
your expected winning is 0. But the two games are different in how much the outcome fluctuates
around the mean. This notion if fluctuation is captured by the following quantity called variance:

Var(X ) = E[(X −E(X ))2]. (15)

Namely, it is the expected squared difference between X and its expectation E(X ).

Exercise 2.5. For any RV X , show that

Var(X ) = E(X 2)−E(X )2. (16)

Exercise 2.6. In this exercise, we will see how we can express the variance of sums of RVs. For two
RVs X and Y , define their covariance Cov(X ,Y ) by

Cov(X ,Y ) = E(X Y )−E(X )E(Y ). (17)

(i) Use Exercises 2.5 and 2.4 to show that

Var(X +Y ) = Var(X )+Var(Y )+2Cov(X ,Y ). (18)

(ii) Use induction to show that for RVs X1, X2 · · · , Xn

Var

(
n∑

i=1
Xi

)
=

n∑
i=1

Var(Xi )+2
∑

1≤i , j≤n
Cov(Xi , X j ) (19)

Here are some of the simplest and yet most important RVs.

Exercise 2.7. (Bernoulli RV) A RV X is a Bernoulli variable with (success) probability p ∈ [0,1] if it
takes value 1 with probability p and 0 with probability 1−p. In this case we write X ∼ Bernoulli(p).
Show that E(X ) = p and Var(X ) = p(1−p).

Exercise 2.8 (Indicator variables). Let (Ω,P) be a probability space and let E ⊆Ω be an event. The
indicator variable of the event E , which is denoted by 1E , is the RV such that 1E (ω) = 1 ifω ∈ E and
1E (ω) = 0 if ω ∈ E c . Show that 1E is a Bernoulli variable with success probability p =P(E).

3. CONDITIONING AND INDEPENDENCE

Consider two experiments on a probability space and the outcomes are recorded by RVs X and
Y . For instance, X could be the number of friends on Facebook and Y could be the number of
connections on LinkedIn of a randomly chosen classmate. Perhaps it would be case that Y is large
if X is large. Or maybe the opposite is true. In any case, the outcome of Y is most likely be affected
by knowing something about X . This leads to the notion of ‘conditioning’. For any two events E1

and E2 such that P(E2) > 0, we define

P(E1 |E2) = P(E1 ∩E2)

P(E2)
(20)

and this quantity is called the conditional probability of E1 given E2. For RVs X ,Y and subsets
A1, A2 ⊆R, we similarly define

P(X ∈ A1 |Y ∈ A2) = P(X ∈ A1 and Y ∈ A2)

P(Y ∈ A2)
. (21)

This is the conditional probability that X belongs to A1 given that Y belongs to A2. The conditional
expectation of X given Y = y is defined by

E(X |Y = y) =∑
x

xP(X = x |Y = y). (22)
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Example 3.1. Consider two RVs X and Y taking values from {0,1,2,3}. Their joint PMF is depicted
in Figure 1. Then

P(X ≥ 2 |Y = 2) =P(X = 2 |Y = 2)+P(X ≥ 3 |Y = 2) (23)

= P(X = 2 and Y = 2)

P(Y = 2)
+ P(X = 3 and Y = 2)

P(Y = 2)
(24)

= 5/33

(3+0+5+1)/33
+ 1/33

(3+0+5+1)/33
= 2/3. (25)

Moreover,

E(X |Y = 2) =
3∑

x=0
xP(X = x |Y = 2) (26)

= 0
1/33

9/33
+1

0

9/33
+2

5/33

9/33
+3

1/33

9/33
= 13/9. (27)
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FIGURE 1. Two RVs X ,Y and their joint distribution in red. Common denominator of 33
is omitted in the figure.

When knowing something about one RV does not yield any information of the other, we say the
two RVs are independent. Formally, we say two events E1 and E2 are independent if

P(E1 ∪E2) =P(E1)P(E2). (28)

Two RVs X and Y are independent if for any two subsets A1, A2 ⊆R,

P(X ∈ A1 and Y ∈ A2) =P(X ∈ A1)P(Y ∈ A2). (29)

We say two events or RVs are dependent if they are not independent.

Exercise 3.2. Suppose two RVs X and Y are independent. Then for any subsets A1, A2 ⊆ R such
that P(Y ∈ A2) > 0, show that

P(X ∈ A1 |Y ∈ A2) =P(X ∈ A1). (30)

Example 3.3. Flip two fair coins at the same time, and let X = 1 if the first coin lands heads and
X = −1 if it lands tails. Let Y be a similar RV for the second coin. Clearly knowing about one
coin does not give any information of the other. For instance, the first coin lands on heads with
probability 1/2. Whether the first coin lands on heads or not, the second coin will land on heads
with probability 1/2. So

P(X = 1 and Y = 1) = 1

2
· 1

2
=P(X = 1)P(Y = 1). (31)

Exercise 3.4. Recall the definition of covariance given in Exercise 2.6.

(i) Show that if two RVs X and Y are independent, then Cov(X ,Y ) = 0
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(ii) Use Exercise 2.6 to conclude that if X1, · · · , Xn are independent RVs, then

Var(X1 +·· ·+Xn) = Var(X1)+·· ·+Var(Xn). (32)

4. BINOMIAL, GEOMETRIC, AND POISSON RVS

Example 4.1 (Binomial RV). Let X1, X2, · · · , Xn be independent and identically distributed Bernoulli
p variables. Let X = X1 +·· ·+ Xn . One can think of flipping the same probability p coin n times.
Then X is the total number of heads. Note that X has the following PMF

P(X = k) =
(

n

k

)
pk (1−p)k (33)

for k nonnegative integer, and P(X = k) = 0 otherwise. We say X follows the Binomial distribution
with parameters n and p, and write X ∼ Binomial(n, p).

We can compute the mean and variance of X using the above PMF directly, but it is much easier
to break it up into Bernoulli variables and use linearity. Recall that Xi ∼ Bernoulli(p) and we have
E(Xi ) = p and Var(Xi ) = p(1−p) for each 1 ≤ i ≤ n (from Exercise 2.7). So by linearity of expectation
(Exercise 2.4),

E(X ) = E(X1 +·· ·+Xn) = E(X1)+·· ·+E(Xn) = np. (34)

On the other hand, since Xi ’s are independent, variance of X is the sum of variance of Xi ’s (Exercise
3.4) so

Var(X ) = Var(X1 +·· ·+Xn) = Var(X1)+·· ·+Var(Xn) = np(1−p). (35)

Example 4.2 (Geometric RV). Suppose we flip a probability p coin until it lands heads. Let X be
the total number of trials until the first time we see heads. Then in order for X = k, the first k −1
flips must land on tails and the kth flip should land on heads. Since the flips are independent with
each other,

P(X = k) =P({T,T, · · · ,T, H }) = (1−p)k−1p. (36)

This is valid for k positive integer, and P(X = k) = 0 otherwise. Such a RV is called a Geometric RV
with (success) parameter p, and we write X ∼ Geom(p).

The mean and variance of X can be easily computed using its moment generating function,
which we will learn soon in this course. For their direct computation, note that

E(X )− (1−p)E(X ) = (1−p)0p +2(1−p)1p +3(1−p)2p +4(1−p)3p · · · (37)

− [
(1−p)1p +2(1−p)2p +3(1−p)3p +·· ·] (38)

= (1−p)0p + (1−p)1p + (1−p)2p + (1−p)3p · · · (39)

= p

1− (1−p)
= 1, (40)

where we recognized the series after the second equality as a geometric series. This gives

E(X ) = 1/p. (41)

Exercise 4.3. Let X ∼ Geom(p). Use a similar computation as we had in Example 4.2 to show
E(X 2) = (2−p)/p2. Using the fact that E(X ) = 1/p, conclude that Var(X ) = (1−p)/p2.

Example 4.4 (Poisson RV). A RV X is a Poisson RV with rate λ> 0 if

P(X = k) = λk e−λ

k !
(42)

for all nonnegative integers k ≥ 0. We write X ∼ Poisson(λ).
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Poisson distribution is obtained as a limit of the Binomial distribution as the number n of tri-
als tend to infinity while the mean np is kept at constant λ. Namely, let Y ∼ Binomial(n, p) and
suppose np = λ. This means that we expect to see λ successes out of n trials. Then what is the
probability that we see, say, k successes out of n trials, when n is large? Since the mean is λ, this
probability should be very small when k is large compared to λ. Indeed, we can rewrite the Bino-
mial PMF as

P(Y = k) = n(n −1)(n −2) · · · (n −k +1)

k !
pk (1−p)n−k (43)

= n

n

(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− k −1

n

)
(np)k

k !
(1−p)n−k (44)

=
(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− k −1

n

)
λk

k !

(
1− λ

n

)n−k

. (45)

As n tends to infinity, the limit of the last expression is precisely the right hand side of (42). 1

Exercise 4.5. Let X ∼ Poisson(λ). Show that E(X ) = Var(X ) =λ.

5. CONTINUOUS RVS

So far we have only considered discrete RVs, which takes either finitely many or countably many
values. While there are many examples of discrete RVs, there are also many instances of RVs which
various continuously (e.g., temperature, height, weight, price, etc.). To define a discrete RV, it was
enough to specify its PMF. For a continuous RV, probability distribution function (PDF) plays an
analogous role of PMF. We also need to replace summation

∑
with an integral

∫
d x.

Namely, X is a continuous RV if there is a function fX : R→ [0,∞) such that for any interval
[a,b], the probability that X takes a value from an interval (a,b] is given by integrating fX over the
interval (a,b]:

P(X ∈ (a,b]) =
∫ b

a
fX (x)d x. (46)

The cumulative distribution function (CDF) of a RV X (either discrete or continuous), denoted by
FX , is defined by

FX (x) =P(X ≤ x). (47)

By definition of PDF, we get

FX (x) =
∫ x

−∞
fX (t )d t . (48)

Conversely, PDFs can be obtained by differentiating corresponding CDFs.

Exercise 5.1. Let X be a continuous RV with PDF fX . Let a be a continuity point of fX , that is, fX

is continuous at a. Show that FX (x) is differentiable at x = a and

dFX

d x

∣∣∣
x=a

= fX (a). (49)

The expectation of a continuous RV X with pdf fX is defined by

E(X ) =
∫ ∞

−∞
x fX (x)d x, (50)

and its variance Var(X ) is defined by the same formula (15).

1Later, we will interpret the value of a Poisson variable X ∼ Poisson(λ) as the number of customers arriving during a
unit time interval, where the waiting time between consecutive customers is distributed as an independent exponential
distribution with mean 1/λ. Such an arrival process is called the Poisson process.
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Exercise 5.2. (Tail sum formula for expectation) Let X be a continuous RV with PDF fX and sup-
pose fX (x) = 0 for all x < 0. Use Fubini’s theorem to show that

E(X ) =
∫ ∞

0
P(X ≥ t )d t . (51)

6. UNIFORM, EXPONENTIAL, AND NORMAL RVS

Example 6.1 (Uniform RV). X is a uniform RV on the interval [a,b] (denoted by X ∼ Uniform([a,b]))
if it has PDF

fX (x) = 1

b −a
1(a ≤ x ≤ b). (52)

An easy computation gives its CDF:

P(X ≤ x) =


0 x < a

(x −a)/(b −a) a ≤ x ≤ b

1 x > b.

(53)

Exercise 6.2. Let X ∼ Uniform([a,b]). Show that

E(X ) = a +b

2
, Var(E) = (b −a)2

12
. (54)

Example 6.3 (Exponential RV). X is an exponential RV with rate λ (denoted by X ∼ Exp(λ)) if it
has PDF

fX (x) =λe−λx 1(x ≥ 0). (55)

Integrating the PDF gives its CDF

P(X ≤ x) = (1−e−λx )1(x ≥ 0). (56)

Using Exercise 5.2, we can compute

E(X ) =
∫ ∞

0
e−λt d t =

[
−e−λt

λ

]∞

0

= 1/λ. (57)

Exercise 6.4. Let X ∼ Exp(λ). Show that E(X ) = 1/λ directly using definition (50). Also show that
Var(X ) = 1/λ2.

Example 6.5. 1.28[Normal RV] X is a normal RV with mean µ and variance σ2 (denoted by X ∼
N (µ,σ2)) if it has PDF

fX (x) = 1p
2πσ2

e−
(x−µ)2

2σ2 . (58)

If µ= 0 andσ2 = 1, then X is called a standard normal RV. Note that if X ∼ N (µ,σ2), then Y := X −µ
has PDF

fY (x) = 1p
2πσ2

e−
x2

2σ2 . (59)

Since this is an even function, it follows that E(Y ) = 0. Hence E(X ) =µ.

Exercise 6.6 (Gaussian integral). In this exercise, we will show
∫ ∞
−∞ e−x2

d x =p
π.

(i) Show that ∫
xe−x2

d x =−1

2
e−x2 +C . (60)

(ii) Let I = ∫ ∞
−∞ e−x2

d x. Show that

I 2 =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) d x d y. (61)
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(iii) Use polar coordinate (r,θ) to rewrite

I 2 =
∫ 2π

0

∫ ∞

0
e−r 2

r dr dθ = 2π
∫ ∞

0
r e−r 2

dr. (62)

Then use (i) to deduce I 2 =π. Conclude I =p
π.

Exercise 6.7. Let X ∼ N (µ,σ2). In this exercise, we will show Var(X ) =σ2.

(i) Show that Var(X ) = Var(X −µ).
(ii) Use integration by parts and Exercise 6.6 to show that∫ ∞

0
x2e−x2

d x =
[

x

(
−1

2
e−x2

)]∞
0
+

∫ ∞

0

1

2
e−x2

d x =
p
π

4
. (63)

(iii) Use change of variable t =p
2σx and (ii) to show∫ ∞

0

x2

p
2πσ2

e−x2
d x = 2σ2

p
π

∫ ∞

0
t 2e−t 2

d t = σ2

2
. (64)

Conclude Var(X ) =σ2.
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