MATH 170B LECTURE NOTE 0: REVIEW OF MATH 170A

HANBAEK LYU

Many things in life are uncertain. Can we ‘measure’ and compare such uncertainty so that it
helps us to make more informed decision? Probability theory provides a systematic way of doing
sO.

1. PROBABILITY MEASURE AND PROBABILITY SPACE

We begin with idealizing our situation. Let Q be a finite set, called sample space. This is the
collection of all possible outcomes that we can observe (think of six sides of a die). We are going
to perform some experiment on , and the outcome could be any subset E of Q, which we call
an event. Let us denote the collection of all events E < Q by 22. A probability measure on Q is
a function P’ such that for each event E < Q, it assigns a number P(E) € [0,1] and satisfies the
following properties:

i) P(@)=0and P(Q) = 1.
(ii) If two events E, E» < Q are disjoint, then P(E; U E») = P(E;) + P(E)).

In words, P(E) is our quantization of how likely it is that the event E occurs out of our experiment.

Exercise 1.1. Let P’ be a probability measure on sample space Q. Show the following.

(i) Let E = {x1,x2, - x;} € Q be an event. Then P(E) = Zle P({x;}) =1.
(i) X caPdxh) =1.

If P is a probability measure on sample space Q, we call the pair (O, P) a probability space. This is
our idealized world where we can precisely measure uncertainty of all possible events. Of course,
there could be many (in fact, infinitely many) different probability measures on the same sample
space.

Exercise 1.2 (coin flip). Let Q = {H, T} be a sample space. Fix a parameter p € [0, 1], and define a
function P, : 22— [0,1] by Py(@)=0,P,({H}) = p,Pp({TH =1-p,P,({H, T} = 1. Verify that P, is
a probability measure on Q for each value of p.

A typical way of constructing a probability measure is to specify how likely it is to see each
individual element in Q. Namely, let f : Q — [0, 1] be a function that sums up to 1, i.e., }_yeq f(x) =
1. Define a function P : 22 — [0, 1] by

P(E) =) f(w). )
weE
Then this is a probability measure on Q, and f is called a probability distribution on Q. For in-
stance, the PMF on {H, T} we used to define P, in Exercise 1.2 is f(H) = pand f(T)=1-p.

Exercise 1.3. Show that the function P : 22 — [0, 1] defined in (1) is a probability measure on Q.
Conversely, show that every probability measure on a finite sample space Q2 can be defined in this
way.

Remark 1.4 (General probability space). A probability space does not need to be finite, but we
need a more careful definition in that case. For example, if we take Q to be the unit interval [0, 1],
then we have to be careful in deciding which subset E < Q) can be an ‘event’: not every subset of Q
can be an event. A proper definition of general probability space is out of the scope of this course.
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2. (DISCRETE) RANDOM VARIABLES

Given a probability space (Q2,[P), a random variable (RV) is a real-valued function X : Q — R. We
can think of it as the outcome of some experiment on Q (e.g., height of arandomly selected friend).
We often forget the original probability space and specify a RV by is probability mass function
(PMPF) fx:R—[0,1],

fx(x)=P(X =x) =P(we Q| X(w) = x}). )
Namely, P(X = x) is the likelihood that the RV X takes value x.

Example 2.1. Say you win $1 if a fair coin lands heads and lose $1 if lands tails. We can set up our
probability space (Q2,P) by Q = {H, T} and P = P}, as in Exercise 1.2. The RV X : Q — R for this
game is X(H) = 1 and X(T) = —1. The PMF of X is given by fx(1) =P(X =1) =P({H}) =1/2 and
likewise fx(—1) =1/2.

Exercise 2.2. Let (2,®) be a probability space and X : Q — R be a RV. Show that its PMF fx adds

up to 1, that is,
Y fx@)=1, 3)
X

where the summation runs over all numerical values x that X can take.

There are two useful statistics of a RV to summarize its property. First, if one has to guess the
value of a RV X, what would be the best choice? It is the expectation (or mean) of X, defined as
below:

E(X) =) xP(X =x). (4)
X

Exercise 2.3 (Tail sum formula for expectation). For any RV X taking values on positive integers,
show that

EX) =) PX = x). (5)
x=1

Exercise 2.4 (Linearity of expectation). In this exercise, we will show that the expectation of sum
of RVs is the sum of expectation of individual RVs.

(i) Let X and Y be RVs. Show that

Y PX=x,Y=y)=P(X=x). (6)
y
(ii) Verify the following steps:
EX+Y)=) zP(X+Y =2) )
=) Y (x+yPX=x,Y=y @)
T
=) x+))PX=x,Y=y) 9)
Xy
=) xPX=x,Y=y)+) yPX=x,Y=y) (10)
X,y x,y
:Zx(Z[P’(X:x,y:y) +Zy(ZP(X:x,Y:y) (11)
x y y x
=) APX=x)+) yP(Y =) (12)
X y
= E(X) + E(Y). (13)

(iii) Use induction to show that for any RVs Xi, Xy, -+, X;;, we have
E(X;+Xo +---4+ X)) =E(X7) +E(X2) +--- +E(X}). (14)
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On the other hand, say you play two different games where in the first game, you win or lose
$1 depending on a fair coin flip, and in the second game, you win or lose $10. In both games,
your expected winning is 0. But the two games are different in how much the outcome fluctuates
around the mean. This notion if fluctuation is captured by the following quantity called variance:

Var(X) = E[(X - E(X))?]. (15)
Namely, it is the expected squared difference between X and its expectation E(X).
Exercise 2.5. For any RV X, show that

Var(X) = E(X?) - E(X)*. (16)

Exercise 2.6. In this exercise, we will see how we can express the variance of sums of RVs. For two
RVs X and Y, define their covariance Cov(X, Y) by

Cov(X,Y) =E(XY) -EX)E(Y). (17)
(i) Use Exercises 2.5 and 2.4 to show that
Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y). (18)
(ii) Use induction to show that for RVs X;,X5---, X,
Var i Xi|= iVar(X,-) +2 Z Cov(X;, X;) (19)
i=1 i=1 1<i,jsn

Here are some of the simplest and yet most important RVs.

Exercise 2.7. (Bernoulli RV) A RV X is a Bernoulli variable with (success) probability p € [0, 1] if it
takes value 1 with probability p and 0 with probability 1— p. In this case we write X ~ Bernoulli(p).
Show that E(X) = p and Var(X) = p(1 - p).

Exercise 2.8 (Indicator variables). Let (Q2,[P) be a probability space and let E < Q) be an event. The
indicator variable of the event E, which is denoted by 1, is the RV such that 15(w) =1 if w € E and
1z(w) = 0if w € E€. Show that 15 is a Bernoulli variable with success probability p = P(E).

3. CONDITIONING AND INDEPENDENCE

Consider two experiments on a probability space and the outcomes are recorded by RVs X and
Y. For instance, X could be the number of friends on Facebook and Y could be the number of
connections on LinkedIn of a randomly chosen classmate. Perhaps it would be case that Y is large
if X is large. Or maybe the opposite is true. In any case, the outcome of Y is most likely be affected
by knowing something about X. This leads to the notion of ‘conditioning’. For any two events E;

and E, such that P(E,) > 0, we define
P(E; N Ey)
P(Ey | E) = ———— 20
(E11E2) PE,) (20)
and this quantity is called the conditional probability of E; given E,. For RVs X,Y and subsets
A1, A, <R, we similarly define

P(X € A and Y € Ap)
P(X€ A |Y € Ay) = . 1)
P(Y € Ay)

This is the conditional probability that X belongs to A; given that Y belongs to A,. The conditional
expectation of X given Y = y is defined by

EX|Y=y)=) xP(X=x|Y =y). (22)
X
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Example 3.1. Consider two RVs X and Y taking values from {0, 1,2, 3}. Their joint PMF is depicted
in Figure 1. Then

P(X=z2|Y=2)=P(X=2|Y=2)+P(X=3|Y =2) (23)
_P(X=2andY=2) P(X=3andY =2)

+ (24)
P(Y =2) P(Y =2)
5/33 1/33
= + =2/3. (25)
(3+0+5+1)/33 (3+0+5+1)/33
Moreover,
3
[E(X|Y:2)=Zx|]3>(X=x|Y=2) (26)
x=0
1/33 0 5/33 1/33
= + + +3 =13/9. 27
9/33 9/33 9/33 9/33
Y
3 04/ 01/ 01/ ol/
5 .3/ .o 5/ 11/
1| & & o &

1/ 1/ 2/ 2/

FIGURE 1. Two RVs X, Y and their joint distribution in red. Common denominator of 33
is omitted in the figure.

When knowing something about one RV does not yield any information of the other, we say the
two RVs are independent. Formally, we say two events E; and E, are independent if

P(E1 U E2) = P(E))P(E2). (28)
Two RVs X and Y are independent if for any two subsets A;, A € R,
P(X e Ay and Y € Ay) = P(X € A)P(Y € A,). (29)
We say two events or RVs are dependent if they are not independent.
Exercise 3.2. Suppose two RVs X and Y are independent. Then for any subsets A;, A2 < R such

that P(Y € A,) > 0, show that
P(XeA1|Y € A)=P(X€A). (30)

Example 3.3. Flip two fair coins at the same time, and let X = 1 if the first coin lands heads and
X = -1 if it lands tails. Let Y be a similar RV for the second coin. Clearly knowing about one
coin does not give any information of the other. For instance, the first coin lands on heads with
probability 1/2. Whether the first coin lands on heads or not, the second coin will land on heads
with probability 1/2. So

| =

1
22

Exercise 3.4. Recall the definition of covariance given in Exercise 2.6.

(i) Show thatif two RVs X and Y are independent, then Cov(X,Y) =0

P(X=landY=1)= =P(X=1DP(Y =1). (31)
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(ii) Use Exercise 2.6 to conclude that if X3,---, X, are independent RVs, then

Var(X; +---+ X;;) = Var(Xy) +--- + Var(X,). (32)

4. BINOMIAL, GEOMETRIC, AND POISSON RVS

Example 4.1 (Binomial RV). Let X;, X, -+, X, beindependent and identically distributed Bernoulli
p variables. Let X = X; +--- 4+ Xj;. One can think of flipping the same probability p coin n times.
Then X is the total number of heads. Note that X has the following PMF

n
k

for k nonnegative integer, and P(X = k) = 0 otherwise. We say X follows the Binomial distribution
with parameters n and p, and write X ~ Binomial(n, p).

We can compute the mean and variance of X using the above PMF directly, but it is much easier
to break it up into Bernoulli variables and use linearity. Recall that X; ~ Bernoulli(p) and we have
E(X;) = pand Var(X;) = p(1-p) foreach 1 < i < n (from Exercise 2.7). So by linearity of expectation
(Exercise 2.4),

IP(X:k):( )pk(l—p)k (33)

E(X)=E(X; + -+ X,) =E(X7) + -+ E(X},) = np. (34)

On the other hand, since X;’s are independent, variance of X is the sum of variance of X;’s (Exercise
3.4) so

Var(X) =Var(X; + - + Xp) = Var(Xj) +--- + Var(X,,) = np(1 — p). (35)

Example 4.2 (Geometric RV). Suppose we flip a probability p coin until it lands heads. Let X be
the total number of trials until the first time we see heads. Then in order for X = k, the first k-1
flips must land on tails and the kth flip should land on heads. Since the flips are independent with
each other,
P(X =k)=P({T, T,---,T,H}):(l—p)kflp. (36)

This is valid for k positive integer, and P(X = k) = 0 otherwise. Such a RV is called a Geometric RV
with (success) parameter p, and we write X ~ Geom(p).

The mean and variance of X can be easily computed using its moment generating function,
which we will learn soon in this course. For their direct computation, note that

EX)-(1-pEX)=1-p)°p+20-p)lp+30-pilp+40-p)ip--- 37)
~[a-ptp+20-p)Pp+301-p)Pp+--] (38)
=1-p’p+A-p)p+A-p?p+A-p’p-- (39)
- #lp) -1, (40)

where we recognized the series after the second equality as a geometric series. This gives
E(X)=1/p. (41)

Exercise 4.3. Let X ~ Geom(p). Use a similar computation as we had in Example 4.2 to show
E(X?) = (2— p)/ p?. Using the fact that E(X) = 1/p, conclude that Var(X) = (1 - p)/ p®.
Example 4.4 (Poisson RV). ARV X is a Poisson RV with rate A > 0 if
A=A
k!
for all nonnegative integers k = 0. We write X ~ Poisson(A).

P(X=k)=

(42)
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Poisson distribution is obtained as a limit of the Binomial distribution as the number 7 of tri-
als tend to infinity while the mean np is kept at constant A. Namely, let Y ~ Binomial(zn, p) and
suppose np = A. This means that we expect to see A successes out of n trials. Then what is the
probability that we see, say, k successes out of n trials, when 7 is large? Since the mean is A, this
probability should be very small when k is large compared to A. Indeed, we can rewrite the Bino-
mial PMF as

P(Y = k) = n(n—l)(”—zk)"”(n_k"'Dpk(l_p)n—k (43)
o, 1)(, 2 I A T —
o S (G U e
G R (e e
Y PO | ST DU PP A P RLY R (45)
n n n k! n

As n tends to infinity, the limit of the last expression is precisely the right hand side of (42). !

Exercise 4.5. Let X ~ Poisson(A). Show that E(X) = Var(X) = A.

5. CONTINUOUS RVSs

So far we have only considered discrete RVs, which takes either finitely many or countably many
values. While there are many examples of discrete RVs, there are also many instances of RVs which
various continuously (e.g., temperature, height, weight, price, etc.). To define a discrete RV, it was
enough to specify its PME For a continuous RV, probability distribution function (PDF) plays an
analogous role of PME We also need to replace summation Y with an integral [ dx.

Namely, X is a continuous RV if there is a function fx : R — [0,00) such that for any interval
[a, b], the probability that X takes a value from an interval (a, b] is given by integrating fx over the
interval (a, b]:

b
P(X € (a, b)) =f [x(x)dx. (46)

The cumulative distribution function (CDF) of a RV X (either discrete or continuous), denoted by
Fx, is defined by
Fx(x) =P(X = x). (47)

By definition of PDE we get
X
Fx(x) = f fx(@®dt. (48)
(e.0]

Conversely, PDFs can be obtained by differentiating corresponding CDFs.

Exercise 5.1. Let X be a continuous RV with PDF fy. Let a be a continuity point of f¥, thatis, fx
is continuous at a. Show that Fx (x) is differentiable at x = a and

dFx
dx
The expectation of a continuous RV X with pdf fx is defined by

= fx(a). (49)

X=a

E(X) :f xfx(x)dx, (50)

and its variance Var(X) is defined by the same formula (15).

1L ater, we will interpret the value of a Poisson variable X ~ Poisson(A) as the number of customers arriving during a
unit time interval, where the waiting time between consecutive customers is distributed as an independent exponential
distribution with mean 1/A. Such an arrival process is called the Poisson process.
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Exercise 5.2. (Tail sum formula for expectation) Let X be a continuous RV with PDF fx and sup-
pose fx(x) =0 for all x < 0. Use Fubini’s theorem to show that

E(X) =f P(X=1dt. (51)
0

6. UNIFORM, EXPONENTIAL, AND NORMAL RVS

Example 6.1 (Uniform RV). X isa uniform RV ontheinterval [a, b] (denoted by X ~ Uniform([a, b]))
if it has PDF

1
fX(x)zb—l(asbe). (52)
An easy computation gives its CDF:
0 x<a
PX<=x)=X x—-a)/(b—-a) a<x=<b (53)
1 x>Db.
Exercise 6.2. Let X ~ Uniform([a, b]). Show that
E0 =2 vam = 2o @)’ (54)
2 12

Example 6.3 (Exponential RV). X is an exponential RV with rate A (denoted by X ~ Exp(Q)) if it
has PDF

fx(x) = e M 1(x = 0). (55)
Integrating the PDF gives its CDF
PX<x)=1-e™1(x=0). (56)
Using Exercise 5.2, we can compute
o0 e—/lt e
E(X) :f e Mdr=|- =1/A. (57)
0 A 0

Exercise 6.4. Let X ~ Exp(1). Show that E(X) = 1/A directly using definition (50). Also show that
Var(X) = 1/A2.

Example 6.5. 1.28[Normal RV] X is a normal RV with mean u and variance o2 (denoted by X ~
N(u,0?)) if it has PDF

1 _a-w?

e 22 (58)

fx(x) =

2n0?
If = 0and 02 = 1, then X is called a standard normal RV. Note that if X ~ N(u,0?),then Y := X —p
has PDF

fr(x) = e 32, (59)

1
V2no?

Since this is an even function, it follows that E(Y) = 0. Hence E(X) = p.

Exercise 6.6 (Gaussian integral). In this exercise, we will show [ e dx= 7.
(i) Show that

fxe‘x2 dx = —%e‘xz +C. (60)
(i) LetI= [ e~ dx. Show that

Izzf f e dxdy. (61)
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(iii) Use polar coordinate (r,60) to rewrite

2m oo ’ [ele] »
[sz / e’ rdrd@zZn/ re " dr. (62)
o Jo 0

Then use (i) to deduce I? = 7. Conclude I = /7.

Exercise 6.7. Let X ~ N(u,0?). In this exercise, we will show Var(X) = o2.
(i) Show that Var(X) = Var(X — p).
(ii) Use integration by parts and Exercise 6.6 to show that

00 (o) o 1 T
f x2e ™ dx = +f Ze ¥ dx= £ (63)
0 0 0o 2 4
(iii) Use change of variable t = V20 x and (ii) to show

x (—le_x2
2

o] x2 20—2 0o 0.2
f e X dx="0 e Cdr="—. (64)
0 V2mo? VT Jo 2

Conclude Var(X) = ¢?.
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