MATH 170B LECTURE NOTE 1: ADDITIONAL TOPICS IN RANDOM VARIABLES

HANBAEK LYU

1. RANDOM VARIABLE AS A FUNCTION OF ANOTHER RANDOM VARIABLE

We have studied some of the fundamental RVs such as Bernoulli, Binomial, geometric and Poisson
for discrete RVs and uniform, exponential, and normal for continuous RVs. Since different RVs can
be used to model different situations, it is desirable to enlarge our vocabulary of RVs. A nice way to
doing so is to compose a RV with a function to get a new RV.

1.1. Functions of a single RV. Suppose X is a RV with a known CDE We may define a new random
variable Y = g(X) for a function g : R — R. Can we derive CDF of Y and also its PDF (or PMF if X
is discrete)? If we can solve the CDF of Y = g(X), P(g(X) < x), and recognize it as the CDF of some
known RV, then we can identify what RV Y is.

Example 1.1 (Exponential from uniform). Let X ~ Uniform([0,1)) and fix a constant A > 0. Define a
random variable Y = —% log(1-X). Then Y ~ Exp(A). To see this, we calculate the CDF of Y as below:

IP(YSy)zIP(—%log(l—X)sy) 1)
=P (log(l-X)=-1y) 2
=p(1-x=e) 3)
=P(X < 1—e‘”) 4)
=(1-eM1(y=0). (5)

Hence the CDF of Y is that of an exponential RV with rate A. Note that the third equality above uses
the fact that exponential function is an increasing function. A

Remark 1.2. In fact, this is how a computer generates an exponential RV: it first samples a uniform RV
X from [0, 1), and then outputs — % log(1—-X). So the computer does not need to know the exponential
distribution in order to generate exponential RVs.

In general, we can at least describe the PDF of Y = g(X) if we know the PDF of X. See the following
example for an illustration.

Example 1.3. Let X be a RV with PDF fx. Define Y = X2. Then

Fy()=P(Y <y)=P(X’<y)=P(-\/J< X< /PLy=0) 6)
Vi

:1(y20)/ fx(®dt. (7
-Vy

By fundamental theorem of calculus and chain rule, we can differentiate the last expression by y and
get

dFy(y)

1 1
fr»= dy =1(y=0) (fx(\/?)—+fx(—\/?)— 8)

2\/y 2y
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A particularly simple but useful instance is when g is a linear function. We first record a general
observation.

Proposition 1.4 (Linear transform). Let X be a RV with PDF fx. Fix constants a,b € R with a >0, and
defineanew RVY =aX+b. Then

1
Jfax+p(¥) = mfx((y—b)/a). 9)

Proof. First suppose a > 0. Then

(y-b)la
Fy(y)=[F°(Ysy)=P(aX+b5y)=I]3>(Xs(y—b)/a)=f fx(dt. (10)

—00

By differentiating the last integral by y, we get
dFy(y) 1

= =— -b)/a). 11
r» 4y afx((y ) a) 11)
For a <0, a similar calculation shows
o0
Fy(y):IP(YSy)=[P>(aX+bSy):I]J’(Xz(y—b)/a):f fx)dt, (12)
(y-b)la
so we get
dFy(y) 1
= =—— -Db)/a). 13
) dy an((y )/ a) (13)
This shows the assertion. OJ

Example 1.5 (Linear transform of normal RV is normal). Let X ~ N(g,0?) and fix constants a, b € R
with a # 0. Define anew RV Y = aX + b. Then since

1 (x—w?
fx(x) = WeXp(— 557 ) (14)
by Proposition 1.4, we have
~ 1 (y—b- au)z)
W= Vanaor e (- (o)

Notice that this is the PDF of a normal RV with mean au + b and variance (ac)?. In particular, if
we take a = 1/0 and b = p/o, then Y = (X —p)/o ~ N(0,1), the standard normal RV. This is called
standardization of normal RV. A

Exercise 1.6 (Linear transform of exponential RV). Let X ~ Exp(A) and fix constants a,b € R with
a # 0. Show that
A
fax+p(x) = ﬁe‘l(x‘b)’“lt(x —b)la>0). (16)
a

Is aX + b always an exponential RV?

If we compare Example 1.1 and Proposition 1.4 against Example 1.3, we see the invertibility of
the function g makes the computation of Fg(x) much cleaner. Moreover, if we inspect the formula
(9) more closely, we see that the constant factor 1/|al is in fact 1/|g’(x)| and (y — b)/a is the inverse
function of g, where g(x) = ax + b. This leads us to the following observation.
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Proposition 1.7 (invertible transform). Let X be a RV with PDF fx. Let g : R — R be a differentiable
and invertible function. Then we have

feo =@ WfxE )= fx(g ). (17)

1g'(g~ ()
Proof. Since g is invertible, g is either strictly increasing or strictly decreasing. First suppose the
former, so g’ > 0 everywhere. Then

="

g W
Fex)(y) =P(g(X) =y) =PX<g ') =f fx@dz. (18)

—00

Recall that since g_1 (g(x)) = x, by chain rule we have (g_l)’(g(x)) -g'(x) = 1. If we write y = g(x), then

& hHYwm=1/g@g . (19)

Hence differentiating (20) gives (17).
Second, suppose g is strictly decreasing so g’ < 0 everywhere. Then

(o9}

Fexy() =PgX)=y)=P(X= g_l(y)) :f ( )fx(t) dt, (20)
gy

so differentiating by y and using (19) also gives (17), as desired. O

Exercise 1.8 (Cauchy from uniform). Let X ~ Uniform((—n/2,7/2)). Define Y = tan(X).

(i) Show that dtan(y)/dy = sec?(y).

(ii) Show that 1 + tan®( y) = sec?( ¥). (Hint: draw a right triangle with angle y)

(iii) Recall that arctan is the inverse function of tan. Show that arctan(¢) is strictly increasing and
differentiable. Furthermore, show that

d
T arctan(t) = 2 (21)
(iv) Show that Y is a standard Cauchy random variable, that is,
fr(y) = (22)

r(l+y?)’

Remark 1.9. The expectation of Cauchy random variables are not well-defined. We say the expecta-
tion of a continuous RV with PDF fx (x) is well-defined if

[e 0]
f |x| fx(x)dx < oo. (23)
—00

But for the standard Cauchy distribution,

f [ x| fx (x) dx=2f | x| fx (x) dx=—f X dx:—f idxz —f —dx =o0. (24)
0o 0 o 1+x? mJo x? ato x

In such situation, we say the distribution is ‘heavy-tailed’.
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1.2. Functions of two random variables. We can also cook up a RV from two random variables.
Namely, if X,Y are RVs and g is a two variable function g : R> — R, then Z = g(X,Y) is a random
variable.

Example 1.10. Let X; ~ Exp(1;) and X» ~ Exp(A;) and suppose they are independent. Define Y =
max(Xj, X»). To calculate its CDE note that

P(Y =y)=Pmax(X;,Xp) < y)=P(X; <yand Xp < y) =P(X; < ))P(Xy, = y), (25)
where the last equality uses the independence between X; and X,. Using the CDF of exponential RV,
PY<y=1-eM)1-et)1(y=0). (26)

Differentiating by y, we get the PDF of Y

() = Ae MY (1—e MYy 4 (1— e MY e Y 27)
y

=A1e MY 4 N0 Y — (A + Ap)e Mty (28)

A

Exercise 1.11. Let X; ~ Exp(1;) and X» ~ Exp(A;) and suppose they are independent. Define Y =
min(Xj, X,). Show that Y ~ Exp(A; + A,). (Hint: Compute P(Y = y).)

Exercise 1.12. Let X,Y ~ Uniform([0,1]) be independent uniform RVs. Define Z = X + Y. Observe
that the pair (X, Y) is uniformly distributed over the unit square [0, 112. So

P(Z <z)=P(X +Y < z) = Area of the region {(x, ) € [0,1)* | x + y < z}. (29)

(i) Draw a picture shows that

z212 ifo<z<1
P(Z<2)=X{1-(2-2)?2/2 ifl<z<2 (30)
0 otherwise.
(ii) Conclude that
z if0sz=<1
fz(z)=42-2z ifl<z=<?2 (31)
0 otherwise.

1.3. Sums of independent RVs — Convolution. When two RVs X and Y are independent and if the
new random variable Z is their sum X + Y, then the distribution Z is given by the convolution of
PMFs (or PDFs) of each RV. The idea should be clear from the following baby example.

Example 1.13 (Two dice). Roll two dice independently and let their outcome be recorded by RVs X
and Y. Note that both X and Y are uniformly distributed over {1,2,3,4,5,6}. So the pair (X,Y) is
uniformly distributed over the (6 x 6) integer grid {1,2,3,4,5,6} x {1,2,3,4,5,6}. In other words,

1 1

1
P((X,Y)—(x,y))—P(X—x)IP’(Y—y)—E-E——G. (32)
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Now, what is the distribution of the sum Z = X + Y? Since each point (x, y) in the grid is equality
probable, we just need to count the number of such points on the line x + y = z, for each value of z.

In other words,
6

PX+Y=2=) PX=x)P(Y=z-x). (33)
x=1
This is easy to compute from the following picture: For example, P(X+ Y =7) =6/36 = 1/6. A
x+y=7

\.\x+y=12

x+y=11

x+y=6

x+y=5

xty=4 x+y=10

x+y=3 x+y=9

x+y=2 x+y=8

FIGURE 1. Probability space for two dice and lines on which sum of the two are constant.

Proposition 1.14 (Convolution of PMFs). Let X,Y be two independent integer-valued RVs. Let Z =
X+Y. Then

P(Z=2) =) PX=xP(Y =z-x). (34)
X

Proof. Note that the pair (X, Y) is distributed over Z? according to the distribution
PX=x,Y=y)=P(X=x)P(Y =y), (35)

since X and Y are independent. Hence in order to get P(Z = z) = P(X + Y = z), we need to add up all
probabilities of the pairs (x, y) over the line x + y = z. If we first fix the values of x, then y should take
value z — x. Varying the range of x, we get (34). ([

Exercise 1.15 (Sum of ind. Poisson RVs is Poisson). Let X ~ Poisson(A;) and Y ~ Poisson(A;) be
independent Poisson RVs. Show that X + Y ~ Poisson(11 + 12).

For the continuous case, a similar observation should hold as well. Namely, we should be integrat-
ing all the probabilities of the pair (X, Y) at points (x, y) along the line x + y = z in order to get the
probability density fx.y(z). We will show this in the following proposition using Fubini’s theorem
and change of variables.

Proposition 1.16 (Convolution of PDFs). Let X,Y be two independent RVs with PDFs fx and fy, re-
spectively. Then the RV Z := X + Y has PDF

fz(z)=f fxx) fy(z—x)dx. (36)
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Proof. As usual, we begin with computing the CDF of Z. Note that since X, Y are independent, the
pair (X, Y) is distributed over the plane R? according to the distribution

fx,y(x,¥) = fx(X) fy (). (37

So we can write the probability P(Z < z) as the following double integral

P(Z<2) =f fxX) fr(ydydx (38)
x+y<z
o0 Z—X
=f f fx@) fy(y)dydx, (39)

where for the second inequality we have used Fubini’s theorem. Next, make a change of variable
t=x+y.Theny=t—xand dy=dt, so

(ee] z
:f f fxx) fy(t—x)dtdx. (40)
—00 J —00
Swapping the order of d¢ and dx by using Fubini one more time,
z o0 z
=[ f fX(x)fy(t—x)dxdtzf g(ndt, (41)
—00 J—00 —0o0
where we have written the inner integral as a function of ¢. By differentiating with respect to z, we get
o0
fz(2)=g(2) = f fx(X) fy (z - x) dx. (42)
—00
O

Example 1.17. Let X,Y ~ N(0,1) be independent standard normal RVs. Let Z = X + Y. We will show
that Z ~ N(0, 2) using the convolution formula. Recall that X and Y have the following PDFs:

1 2 1 2
()= ——e "2 ()= —=e V2 (43)
fx NG fr(y Ner
By taking convolution of the above PDFs, we have
o (] x? 1 (z - x)?
o [l el 5
Iz —oo \V271 P 2 27 P 2
1 [*® x2 (z— x)2
= = d 45
21 f_oo xp ( 2 2 ) . (45)
! f ~ ( 24 g 2 ) d (46)
= — exp|—-x“+xz——|dx
27 J-o P 2
1 [e° z\2  Z?
:Ef_ooexp(—(x—i) _Z) dx 47)
1 —z%/4 > 1 ( < 2) 1 —z%/4
=— ¢ —exp|—|x—-=] |dx=—e , (48)
vVan —o0 VTT P ( 2 ) vVan
where we have recognized the integrand in the line as the PDF of N(—z/2,1/2) so that the integral is
1. Since the last expression is the PDF of N(0,2), it follows that Z ~ N (0, 2). A.

The following example generalizes the observation we made in the previous example.
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Example 1.18 (Sum of ind. normal RVs is normal). Let X ~ N(u1,0%) and Y ~ N(uz,03) be inde-
pendent normal RVs. We will see that Z = X + Y is again a normal random variable with distribu-
tion N(uy + o, a% + ag). The usual convolution computation for this is pretty messy (c.f., wikipedia
article). Instead let’s save some work by using the fact that normal distributions are preserved un-
der linear transform (Exercise 1.5). So instead of X and Y, we may consider X’ := (X — u1)/0; and
Y':= (Y — w) /o (It is important to note that we must use the same linear transform here for X and
Y). Then X' ~ N(0,1), and Y’ ~ N(u,0?) where p = (u2 — p1)/01 and o = o2/0;. Now it suffices to
show that Z':= X'+ Y' ~ N(u, 1+ 0?) (see the following exercise for details).
To compute the convolution of the corresponding normal PDFs:

I e e I )
ZZ_—oo mexp > Wexp 552 X
00 2 oy —q2
=% _Ooexp(—x——%) dx. (50)

At this point, we need to ‘complete the square’ for x for the bracket inside the exponential as below:
2

X_+%:P(sz2+mﬂ_z)2) (51)
_ 12:;2 4 2 ;f;x (f:)zz) (52)
et e v
o [ R)
- 1;(;;2 o (1u+_;2) )2 2(8—:7); >
Now rewriting (50),

=525 e oo [+ fam ) &
_ 1 (_ (z—pw* )foo L _M dx (57)

Vertiron P\ 20red) L pr | T

Y

where we have recognized the integral after second equality as that of the PDF of a normal RV with

Z—p : a? / 2 :
o2 and variance ;—. Hence Z' ~ N(u, 1+ 09), as desired. A

Exercise 1.19. Let X, Y be independent RVs and fix constants a >0 and b € R.

(i) Show that X + Y is a normal RV if and only if (aX + b) + (aY + b) is so.

(ii) Show that X + Y is a normal RV, then X+ Y ~ N(u; + Hg,O'% + 0%), where py; = E(X), p = E(Y),
o1 = Var(X), and 0% = Var(Y).

mean

Exercise 1.20 (Sum of i.i.d. Exp is Erlang). Let X;,X>,---, X, ~ Exp(1) be independent exponential
RVs.


https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
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(i) Show that fx, +x,(2) = A>ze }*1(z 2 0).

(i) Show that fx,+x,+x,(2) =27 11322 *?1(z 2 0).

(iii) Let S, =X; +X>+---+ X,. Use induction to show that S,, ~ Erlang(n, 1), that is,
ANt gh—1p=Az

fs, (2= W (59)

2. COVARIANCE AND CORRELATION

2.1. Covariance. When two RVs X and Y are independent, we know that the pair (X, Y) is distributed
according to the product distribution P((X, Y) = (x,)) = P(X = x)P(Y = y) and we can say a lot of
things about their sum, difference, product, maximum, etc. For instance, the expectation of their
product is the product of their expectations:

Exercise 2.1. Let X and Y be two independent RVs. Show that E(XY) = E(X)E(Y).

But what if they are not independent? Then their joint distribution P((X, Y) = (x, y)) can be very
much different from the product distribution P(X = x)P(Y = y). Covariance is the quantity that mea-
sures the ‘average disparity’ between the true joint distribution P((X,Y) = (x, y)) and the product
distribution P(X = x)P(Y = y).

Definition 2.2 (Covariance). Given two RVs X and Y, their covarianceis denoted by Cov(X, Y) and is
defined by

Cov(X,Y) =E(XY)-E(X)E(Y). (60)
We say X and Y are correlated (resp., uncorrelated) if Cov(X, Y) # 0 (resp., Cov(X, Y) =0).

Exercise 2.3. Show the following.

(1) Cov(X,X) = Var(X).
(ii) Cov(X,Y)=E[(X-E(X)(Y —E(Y))].

Exercise 2.4. Show that two RVs X and Y are uncorrelated if they are independent.

Example 2.5 (Uncorrelated but dependent). Two random variables can be uncorrelated but still be
dependent. Let (X, Y) be a uniformly sampled point from the unit circle in the 2-dimensional plane.
Parameterize the unit circle by S' = {(cos,sinf) |0 < 0 < 27}. Then we can first sample a uniform
angle © ~ Uniform([0, 27)), and then define (X, Y) = (cos©,sin®). Recall from your old memory that

sin2t =2costsint. (61)
Now
E(XY)=E(cos®sin®) (62)
1
= E[E(sin 20) (63)
1 21
=—f sin2tdt (64)
2Jo

1 1 2
=— [——cosZt] =0. (65)
2 2 0
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On the other hand,

2m

[E(X):[E(cosG)):/ costdt=0 (66)
0

and likewise E(Y) = 0. This shows Cov(X, Y) =0, so X and Y are uncorrelated. However, they satisfy
the following deterministic relation
X*+Y%=1, 67)

so clearly they cannot be independent. A

So if uncorrelated RVs can be dependent, what does the covariance really measure? It turns out,
Cov(X, Y) measures the ‘linear tendency’ between X and Y.

Example 2.6 (Linear transform). Let X be a RV, and define another RV Y by Y = aX + b for some
constants a, b € R. Let’s compute their covariance using linearity of expectation.

Cov(X,Y) = Cov(X, aX + b) (68)
=E(aX?+bX) -E(X)E(aX + b) (69)
= aE(X?) + bE(X) — E(X) (aE(X) + b) (70)
= a[E(X?) - E(X)?] (71)
= aVar(X). (72)

Thus, Cov(X,aX + b) > 0if a> 0 and Cov(X,aX + b) < 0if a < 0. In other words, if Cov(X, Y) > 0, then
X and Y tend to be large at the same time; if Cov(X, Y) > 0, then Y tends to be small if X tends to be
large. A

From the above example, it is clear that why the x- and y-coordinates of a uniformly sampled point
from the unit circle are uncorrelated - they have no linear relation!

Exercise 2.7 (Covariance is symmetric and bilinear). Let X and Y be RVs and fix constants a, b € R.
Show the following.

(i) Cov(aX+b,Y)=aCov(X,Y).

(i) Cov(X+2,Y)=Cov(X,Y)+Cov(Z,Y).

(iii) Cov(X,Y) =Cov(Y, X).

Next, let’s say four RVs X, Y, Z, and W are given. Suppose that Cov(X, Y) > Cov(Z, W) > 0. Can we
say that ‘the positive linear relation’ between X and Y is stronger than that between Z and W? Not
quite.

Example 2.8. Suppose XisaRV.Let Y =2X, Z=2X,and W =4X. Then

Cov(X,Y) =Cov(X,2X) =2Var(X), (73)

and
Cov(Z,W) =Cov(2X,4X) =8Var(X). (74)
But Y =2X and W =27, so the linear relation between the two pairs should be same. A

So to compare the magnitude of covariance, we first need to properly normalize covariance so
that the effect of fluctuation (variance) of each coordinate is not counted: then only the correlation
between the two coordinates will contribute. This is captured by the following quantity.
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Definition 2.9 (Correlation coefficient). Given two RVs X and Y, their correlation coefficient p(X,Y)
is defined by

(X, V)= D) 75)
VVar(X)v'VarY
Example 2.10. Suppose X is a RV and fix constants a, b € R. Then
p(X,aX+b) = — VXX _ avar(X) -2 sign(a). (76)
VVar(X)vVar(aX+b) Var(X)\va?Var(X) lal
A

Exercise 2.11 (Cauchy-Schwarz inequality). Let X, Y are RVs. Suppose E(Y?) > 0. We will show that
the ‘inner product’ of X and Y is at most the product of their ‘magnitudes’

(i) For any t € R, show that

E[(X — tY)?] = PE(Y?) - 2¢E(XY) +E(X?) (77)
2 2 2y _ 2
:[E(Yz)(t_ [E(XY)) . E(X2)E(Y?) -E(XY) 78)
E(Y?2) E(Y?)
Conclude that
2 2 2y 2
0<E [(X_ E(XY) ) _EXHE(Y?) -EXY) 79)
E(Y?2) E(Y?)
(ii) Show that a RV Z satisfies E(Z2) = 0 if and onlyif P(Z=0)=1.
(iii) Show that
E(XY) < VEX?)VE(Y?), (80)
where the equality holds if and only if
( E(XY) )
P(X = Y|=1. (81)
E(Y?2)
Exercise 2.12. Let X, Y are RVs such that Var(Y) >0. Let X = X —E(X) and Y = Y —E(Y).
(i) Use (79) to show that
0<E (X—MY)Z] = Var(X) (1 - p(X, Y)?) (82)
- Var(Y) B P27

(ii) Show that|p(X,Y)|<1.
(iii) Show that |p(X,Y)|=1ifand onlyif X = aY for some constant a # 0.

2.2. Variance of sum of RVs. Let X,Y be RVs. If they are not necessarily independent, what is the
variance of their sum? Using linearity of expectation, we compute

Var(X +Y) =E[(X + YV)?] —E(X + Y)? (83)
=E[X%+ Y2 +2XY] - ([EX) +E(Y))? (84)
= [E(X?) - E(X)%] + [E(Y?) — E(Y)?] + 2[E(XY) - E(X)E(Y)] (85)
=Var(X) + Var(Y) + 2Cov(X, Y). (86)

Note that Cov(X, Y) shows up in this calculation. We can push this computation for sum of more than
just two RVs.
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Proposition 2.13. For RVs X1, X5 -+, X, we have

n n
Var ZXi):ZVar(X,-)+2 Y. Cov(Xj, X)) (87)
i=1 i=1 1<i,j<n
Proof. By linearity of expectation, we have
n n 2 n 2
Var in):E (in) —(E > Xi ) (88)
i=1 i=1 i=1
=E| ) X,-Xj]— Y EX)EX)) (89)
1<i,j=n 1<i,j<n
= ) [E(X,-Xj)}— Y E(X)EX)) (90)
1<i,j<n 1<i,j<n
= Y [EXiX)-EX)DEX))] 91)
1<i,j<n
= ) [EXX)-EXOEXDI+ Y [EXi X)) -EX)EX))] (92)
l<isn 1<i#j<n
= > Var(X)+2 ) [EX;iXj)-EX)EX;)] (93)
l<i<n l<i<j<n
= ) Var(X))+2 ) Cov(X;X)). (94)
l=<is<n l=i<j<n
O

Exercise 2.14. Show that for independent RVs X3, X»,---, X}, we have

Var

> Xi) =) Var(X;). (95)
i=1 i=1

Example 2.15 (Number of fixed point in a random permutation). Suppose n people came to a party
and somehow the host mixed up their car keys and gave them back completely randomly at the end
of the party. Let X; be a RV, which takes value 1 if person i got the right key and 0 otherwise. Let
N, =Xj + X5 + -+ + X, be the total number of people who got their own keys back. We will show that
E(N,) =Var(Ny,) =1.

First, we observe that each X; ~ Bernoulli(1/7). So we know that E(X;) = 1/n and Var(X;) = [E(Xl.z) -
EX)?=EX)-EX)?=n"'-n"?=n-1/n% Clearly X;’s are not independent: If the first person
got the key number 2, then the second person will never get the right key.

A very important fact is that the linearity of expectation holds regardless of dependence (c.f. Exer-
cise 1.8 in Note 0), so

n

n n 1
Y X :ZE(X,-):ZZ:L (96)
i=1

i=1 i=1

E[N,] =E

On the other hand, to compute the covariance, let’s take a look at E(X; X»). Note that if the first person
got her key, then the second person gets his key with probability 1/(n — 1). So

1
— 97)

EX1Xp)=1-PX;=1X=1)=PX; =D)P(Xo=1|X;=1) = 1
n_

S|~
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Hence we can compute their covariance:

1 1 n-(n-1 1
Cov(X1, Xo) =E(X1 Xo) —E(X)DE(Xp) = ———— — — = _

= . 98
nn-1 n?2 n2n-1 n?2(n-1 (98)
Since there is nothing special about the pair (X, X»), we get
n
Var(Np,) = )_Var(Xj)+2 )Y Cov(X;, X;) (99)
i=1 1<i,j<n
" n-1 1
= +2 _ (100)
i; n? ls%sn n2(n_ 1
SRR g f— (101)
n 2ln2(n-1)
n—1 nn-1) 1
= +2 (102)
n 2! n?(n-1)
n-1 1
= +—=1. (103)
n n

So in the above example, we have shown E(IV) = Var(N) = 1. Does this ring a bell? If X ~ Poisson(1),
then E(X) = Var(N) =1 (c.f. Exercise 1.21 in Note 0). So is N,, somehow related to the Poisson RV with
rate 1? In the following two exercises, we will show that N, approximately follows Poisson(1) if 7z is
large. A

Exercise 2.16 (Derangements). In reference to Example 2.15, let D,, be the total number of arrange-
ments of 7 keys so that no one gets the correct key.

(i) Show that the total number of arrangements of n keys is n!.

(ii) Show that there are (n—1)! arrangements where person 1 got the right key.

(iii) Show that there are (n —2)! arrangements where person 1 and 2 got the right key.
(iv) Show that there are (n — k)! arrangements where person iy, iz, - - -, ix got the right key.
(v) By using inclusion-exclusion, show that

D,=n!- (n—D'+ (n—2)!— n=3)!+---+ (-1 (n—n)! (104)
1 2 3 n
—n'(l—l+l—l+---+(—1)”i)—»1 asn— oo (105)
o 1 2 3! n') e '

Exercise 2.17. Let N, = X; + X» +---+ X, be as in Example 2.15.
(i) Use Exercise 2.16 to show thatforeach1 <k <n,

D,
IP(Nn=k)=(n) n_k (106)
k| n!
o o=l 1 1 1 L1 )
- o m e (R 107
k!n-k)! n! ( 1'+2' 3!+ +(=1) (n-k)! (107
1 11 1 e 1
—%(1—F+E—§++(—l) m) (108)
(ii) Conclude that
-1
Tim P(N, = k) = % — P(Poisson(1) = k). (109)
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Remark 2.18. Recall that Poisson(1) can be obtained from Binomial(n, p) where p = 1/n, for large
n (c.f. Example 1.20 in Note 0). In other words, the sum of n independent Bernoulli(1/7n) RVs is
distributed approximately as Poisson(1). In the key arrangement problem in Example 2.15, note that
the correlation coefficient between X; and X is very small:

Cov(X;, X))  n* 1
JVarXj)/VarX;) n?(n-1?%  (n-1)?

So it’s kind of make sense that X;’s are almost independent for large n, so N, ~ Poisson(1) approxi-
mately for large n.

(110)

p(Xi, Xj) =

3. CONDITIONAL EXPECTATION AND VARIANCE

3.1. Conditional expectation. Let X, Y be discrete RVs. Recall that the expectation E(X) is the ‘best
guess’ on the value of X when we do not have any prior knowledge on X. But suppose we have ob-
served that some possibly related RV Y takes value y. What should be our best guess on X, leveraging
this added information? This is called the conditional expectation of X given Y = y, which is defined
by

EIX|Y =yl =) xP(X=x|Y = y). (111)

This best guess on X given Y = y, of course, depends on y. So it is a function in y. Now if we do
not know what value Y might take, then we omit y and E[X|Y] becomes a RV, which is called the
conditional expectation of X given Y.

Example 3.1. Suppose we have a biased coin whose probability of heads is itself random and is dis-
tributed as Y ~ Uniform([0,1]). Let’s flip this coin n times and let X be the total number of heads.
Given that Y = y € [0, 1], we know that X follows Binomial(n, y). In general, X|U ~ Binomial(n, Y). So
E[X|Y =yl =ny,and E[X]| Y] = nY. Hence as a random variable, E[X|Y] = nY ~ Uniform([0, n]). So
the expectation of E[X|Y] is the mean of Uniform([0, n]), which is n/2. This value should be the true
expectation of X. A

The above example suggests that if we first compute the conditional expectation of X given Y =
¥, and then average this value over all choice of y, then we should get the actual expectation of X.
Justification of this observation is based on the following fact

PY =yl X=x)PX=x)=PX=x,Y=y)=PX=x|Y =y)P(Y =y). (112)

That is, if we are interested in the event that (X, Y) = (x, y), then we can either first observe the value
of X and then Y, or the other way around.

Proposition 3.2 (Iterated expectation). Let X,Y be discrete RVs. Then E(X) =E[E[X]|Y]].

Proof. We are going to write the iterated expectation E[E[X]|Y]] as a double sum and swap the order
of summation (Fubini’s theorem, as always).

E[E(XIY]] = ) E[X|Y = yIP(Y = y) (113)
y

=) [ xPX=x]Y =y)|P(Y =y) (114)
y \x
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:Z; P(X=x|Y =y)P(Y =y) (115)
=£Z APX=x,Y=}y) (116)
=£Z xP(Y =yl X = 0)P(X =x) (117)
Xy
(Z[P’(Y =ylX = x)) P(X = x) (118)
Z P(X = x) = E(X). (119)
x O

Remark 3.3. Here is an intuitive reason why the iterated expectation works. Suppose you want to
make the best guess E(X). Pretending you know Y, you can imporove your guess to be E(X|Y). Then
you admit that you didn’t know anything about Y and average over all values of Y. The result is
E[E[X | Y]], and this should be the same best guess on X when we don’t know anything about Y.

All our discussions above hold for continuous RVs as well: We simply replace the sum by integral
and PMF by PDE To summarize how we compute the iterated expectations when we condition on
discrete and continuous RV:

Zy[E[XI Y=yIP(Y=y) ifYisdiscrete
EEX|Y]] =4 "% . . (120)
SO EIX1Y =ylfy(p)dy ifY is continuous.
Exercise 3.4 (Iterated expectation for probability). Let X, Y be RVs.
(i) For any x € R, show that P(X < x) =E[1(X < x)].
(ii) By using iterated expectation, show that
P(X<x)=EPX=<x|Y)], (121)

where the expectation is taken over for all possible values of Y.

Example 3.5 (Example 3.1 revisited). Let Y ~ Uniform([0,1]) and X ~ Binomial(n, Y). Then X|Y =
y ~ Binomial(n, y) so E[X|Y = y] = ny. Hence

1 1
[E[X]:fO [E[XIY:y]fy(y)aly:f0 nydy=n/2. (122)
A
Example 3.6. Let X; ~ Exp(A;) and X, ~ Exp(A2) be independent exponential RVs. We will show that
P(X < Xp) = —1 (123)
! 2= 11 + 12
using the iterated expectation. Using iterated expectation for probability,
[e.0]
P(X; < X») Zf PX; <X X = xl)/lle_llxl dx1 (124)
0
[e.0]
= f P(Xy > x))A e M dx (125)
0

o0
=/11f e Mg hm gy (126)
0
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0] _ A’]
=2 M+ Ao gy = : 127
1]0 e X1 At (127)

A

Exercise 3.7. Consider a post office with two clerks. Three people, A, B, and C, enter simultaneously.
A and B go directly to the clerks, and C waits until either A or B leaves before he begins service. Let
X4 be the time that A spends at a register, and define X and Xp similarly. Compute the probability
P(Xa > Xp + Xc) that A leaves the post office after B and C, in the following scenarios:

(a) the service time for each clerk is exactly (nonrandom) ten minutes?
(b) the service times are i, independently with probability 1/3 for i € {1,2,3}?
(c) the service times are independent exponential variables with mean 1/u?

Exercise 3.8. Suppose we have a stick of length L. Break it into two pieces at a uniformly chosen point
and let X be the length of the longer piece. Break this longer piece into two pieces at a uniformly
chosen point and let X, be the length of the longer one. Define X3, Xy, - in a similar way.

(i) Let U ~ Uniform([0, L]). Show that X; takes values from [L/2, L], and that X; = max(U, L— U).
(i) From (i), deduce that for any L/2 < x < L, we have

2(L-
PXizx)=PWU=zxo0orL-Uzx)=PUzx)+PU=L-x)= ( T x)‘ (128)

Conclude that X; ~ Uniform([L/2,L]). Whatis E[X7]?

(iii) Show that X, ~ Uniform([x;/2, x;]) conditional on X; = x;. Using iterated expectation, show that
E[X»] = (3/4)%L.

(iv) In general, show that X;,;; | X;; ~ Uniform([X,/2, X;]). Conclude that E[X,,] = (3/4)"L.

3.2. Conditional expectation as an estimator. We introduced the conditional expectation E[X|Y =
y1 as the best guess on X given that Y = y. Such a ‘guess’ on a RV is called an estimator. Let’s first
take a look at two extremal cases, where observing Y gives absolutely no information on X or gives
everything.

Example 3.9. Let X and Y be independent discrete RVs. Then knowing the value of Y should not
yield any information on X. In other words, given that Y = y, the best guess of X should still be E(X).
Indeed,

n n
EXIY=p)=) xP(X=x|Y=y)= ) xP(X=x) =EX). (129)
x=0 x=0

On the other hand, given that X = x, the best guess on X is just x, since the RV X has been revealed

and there is no further randomness. In other words,

n n
EXIX=x)=) zP(X=z|X=x)=) xl(z=x)=x. (130)
z=0 x=0

A
Exercise 3.10. Let X, Y be discrete RVs. Show that for any function g: R — R,
E[Xg(Y)|Y]=g(Y)EIX|Y]. (131)
We now observe some general properties of the conditional expectation as an estimator.

Exercise 3.11. Let X, Y be RVs and denote X = E[X|Y], meaning that X is an estimator of X given Y.
Let X = X — X be the estimation error.



16 HANBAEK LYU

(i) Show that X is an unbiased estimator of X, that is, E(X) = E(X).

(ii) Show that E[X|Y]= X. Hence knowing Y does not improve our current best guess X.
(iii) Show that E[X] =0.

(iv) Show that Cov(X, X) = 0. Conclude that

Var(X) = Var(X) + Var(X). (132)

3.3. Conditional variance. Aswe have defined conditional expectation, we could define the variance
of a RV X given that anther RV Y takes a particular value. Recall that the (unconditioned) variance of
X is defined by

Var(X) = E[(X —E(X))?]. (133)

Note that there are two places where we take expectation. Given Y, we should improve both expecta-
tions so the conditional variance of X given Y is defined by

Var(X|Y) =E[(X -E[X]|Y])?|Y]. (134)
Proposition 3.12. Let X andY be RVs. Then

Var(X|Y) =E[X*| Y] -E[X]|Y]? (135)

Proof. Using linearity of conditional expectation and the fact that E[X| Y] is not random given Y,
Var(XY) = E[X? - 2XE[X|Y]+E[X]| Y)? | Y] (136)
=E[X?|Y]-E2XE[X]|Y]|Y]+E[E[X|Y]?|Y] (137)
=E[X?|Y]-E[X|YIE2X|Y]+E[X]|Y]?E[1] Y] (138)
=E[X*|Y]-2E[X|Y]* +E[X]|Y]? (139)
=E[X*|Y]-E[X| Y] (140)
O

The following exercise explains in what sense the conditional expectation E[X | Y] is the best guess
on X given Y, and that the minimum possible mean squared error is exactly the conditional variance
Var(X|Y).

Exercise 3.13. Let X,Y be RVs. For any function g : R — R, consider g(Y) as an estimator of X. Let
Ey[(X — g(Y))?| Y] be the mean squared error.

(i) Show that

Ey[(X - g(Y)?| Y] =Ey[X?| Y] -2g(Y)Ey[X|Y]+g(Y)? (141)
=(g(V)—Ey(X|Y))? +Ey[X?| Y] -Ey[X]|Y]? (142)
=(g(Y)-LEy(X| Y))2+Var(X| Y). (143)

(ii) Conclude that the mean squared error is minimized when g(Y) = Ey[X | Y] and the global mini-
mum is Var(X|Y).

Next, we study how we can decompose the variance of X by conditioningon Y.

Proposition 3.14 (Law of total variance). Let X and Y be RVs. Then
Var(X) =E(Var(X|Y)) +Var(E[X | Y]). (144)
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Proof. Using previous result, iterated expectation, and linearity of expectation, we have

Var(X) = E(X?) - (EX)? (145)
= Ey(EX?Y)) - (Ey EX]Y))? (146)

= Ey(Var(X|Y) + EX|Y)?) - Ey (EXIY))? (147)

= Ey(Var(X|Y)) + [Ey EX]Y)?) - (Ey (EX]Y))?] (148)

= [Ey(Var(X|Y))+ Vary (E(X|Y)). (149)

O

Here is a handwavy explanation on why the above is true. Given Y, we should measure the fluctu-
ation of X |Y from the conditional expectation E[X | Y], and this is measured as Var(X|Y). Since we
don’t know Y, we average over all Y, giving E(Var(X | Y)). But the reference point E[X | Y] itself varies
with Y, so we should also measure its own fluctuation by Var(E[X | Y]). These fluctuations add up
nicely like Pythagorian theorem because E[X| Y] is an optimal estimator so that these two fluctua-
tions are ‘orthogonal’.

Exercise 3.15. Let X,Y be RVs. Write X =E[X|Y] and X = X —E[X|Y] so that X = X + X. Here X is
the estimate of X given Y and X is the estimation error.
(i) Using Exercise 3.11 (iii) and iterated expectation, show that

E[X?] = Var(E[X | Y]). (150)
(ii) Using Exercise 3.11 (iv), conclude that
Var(X) =E(Var(X|Y)) +Var(E[X | Y]). (151)

Example 3.16. Let Y ~ Uniform([0,1]) and X ~ Binomial(n, Y). Since X|Y = y ~ Binomial(n, y), we
have E[X|Y = y] =ny and Var(X|Y = y) = ny(1 — y). Also, since Y ~ Uniform([0, 1]), we have
2

Var(E[X|Y]) =Var(nY) = ’11—2 (152)
So by iterated expectation, we get
1 n
[E(X):[Ey([E[XIY]):f0 nydyZE. (153)
On the other hand, by law of total variance,
Var(X) =E(Var(X|Y)) +Var(E(X|Y)) (154)
1
:f ny(l-y)dy+Var(nY) (155)
0
2 371 2
—n y——y—] + L (156)
2 3, 12
n’ n
=— 4+ —. (157)
12 6
A

In fact, we can figure out the entire distribution of the binomial variable with uniform rate using
conditioning, not just its mean and variance.

Exercise 3.17. Let Y ~ Uniform([0,1]) and X ~ Binomial(n, Y) as in Exercise 3.16.
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(i) Use iterated expectation for probability to write

1
PX=k) = (Z)f yka-pyFkdy. (158)

0

(i) Write A,k = fol y*(1 - y)"~* dy. Use integration by parts and show that

k
Apk=—"——Ank-1- 159
n,k n—k+1 n,k-1 ( )

forall 1 < k < n. Conclude thatforall0< k < n,
Apk= L1 (160)
) ne L

(iii) Conclude that X ~ Uniform({0,1,---, n}).

Exercise 3.18 (Exercise 3.8 continued). Let X7, X»,---, X, be as in Exercise 3.8.

(i) Show that Var(X;) = L?/48.

(ii) Show that Var(X») = (7/12) Var(X;) + (1/48)E(X;)?.

(iii) Show that Var(X,,+1) = (7/12) Var(X,,) + (1/48)E(X,,)? for anyn=1.
(iv) Using Exercise 3.8, show the following recursion on variance holds:

7 1(9)",
Var(X;,+1) = EVar(Xn) + E (E) L. (161)
Furthermore, compute Var(X>) and Var(X3).
(W)* Let A, = (%)nVar(Xn). Show that A,;’s satisfy
2_ (28 2
Apsq + 1% = (2—7)(An+L ). (162)
(vi)* Show that A, = (28)" " (A, + [?) — 2 forall n> 1.
(vii)* Conclude that
7\" 9\"
Var(X,,) = [(E) _(E) ]LZ. (163)

4. TRANSFORMS OF RVS

In this section, we will see how we associate a function Mx (t) to each RV X and how we can un-
derstand X by looking at Mx(f) instead. The advantage is that now we can use powerful tools from
calculus and analysis (e.g., differentiation, integral, power series, Taylor expansion, etc.) to study RVs.

4.1. Moment generating function. Let X be a RV. Consider a new RV g(X) = e'X, where 1 is a real-
valued parameter we inserted for a reason to be clear soon. A classic point of view of studying X is to
look at its moment generating function (MGF), which is the expectation E[e’X] of the RV e’X.

Example 4.1. Let X be a discrete RV with PMF
1/2 ifx=2
P(X=x)=<1/3 ifx=3 (164)
1/6 if x=>5.
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Its MGF is

X eZt e3t eSt
Ele™]=—+—+—. (165)
2 3 6

A

Here is a heuristic for why we might be interested in the MGF of X. Recall the Taylor expansion of
the exponential function e*:

s S N N
e=1l+—+—+—+---. (166)
1 2t 3!
Plugin s = tX and get
X x*, x3
e X =1+ r+ 2+ P (167)
1! 2! 3!

Taking expectation and using its ‘linearity’, this gives us
E[X] E[X? E[X3
LR EXA L, B s,

EleX]=1
1! 2! 3!

(168)

Notice that the right hand side is a power series in variable ¢, and the kth moment E[X*] of X shows
up in the coefficient of the kth order term ¢*. In other words, by simply taking the expectation of e’X,
we can get all higher moments of X. In this sense, the MGF E[e’*] generates all moments of X, hence
we call its name ‘moment generating function’.

As you might have noticed, the equation (168) needs more justification. For example, what if E[ X 3
is infinity? Also, can we really use linearity of expectation for a sum of infinitely many RVs as in the
right hand side of (167)? We will get to this theoretical point later, and for now let’s get ourselves more
familiar to MGF computation.

Example 4.2 (Bernoulli RV). Let X ~ Bernoulli(p). Then
Ele®]=e'p+e’1-p) =1-p+e'p. (169)
A

Example 4.3 (Poisson RV). Let X ~ Poisson(1). Then using the Taylor expansion of the exponential
function,

00 Ak =2 o (o 1)k
Ele’*]1=) ek‘—k' =e Yy Gl k') = e et =MD (170)
k=0 - k=0 K

Exercise 4.4 (Geometric RV). Let X ~ Geom(p). Show that

t
FleXj= —P% 171
[e ] —(U-pe (171)
Example 4.5 (Uniform RV). Let X ~ Uniform([a, b]). Then
b 1 1 elX b ebt _ pat
E[e'X :f tx dx = | =— 172
] a ¢ b-—a . b—al t |, tb-a) (172)




20 HANBAEK LYU

Example 4.6 (Exponential RV). Let X ~ Exp(A1). Then

o0 o0
E[e'™] =f e e Mdx = )Lf M g (173)
0 0
Considering two cases when t < A and t = A, we get
A .
<= ifr<A
Ele'] = { A (174)
oo ift=A.
A
Example 4.7 (Standard normal RV). Let X ~ N(0,1). Then
Ele'™] = foo L2 gy Lfoo e X2 gy (175)
—00 V2or V2 J-co
By completing square, we can write
SaSPIE VI S PO S I (176)
-— x=—(x"— = —(x— —_
2 2 2 2
So we get
Ele!X] = L[m o 0212 212 g etz/zfoo Le—(x—t)z/Z dx. 177)
V21 J-c0 —o0 V27

Notice that the integrand in the last expression is the PDF of a normal RV with distribution N(t,1).
Hence the last integral equals 1, so we conclude

E[e!X] = e!/2. (178)
A

Exercise 4.8 (MGF of linear transform). Let X be a RV and a, b be constants. Let Mx(t) be the MGF
of X. Then show that

E[e!@X+D)] = oP My (a). (179)
Exercise 4.9 (Standard normal). Let X ~ N (,u,az) and Z ~ N(0,1). Using the fact that Ele'4] = et’2
and Exercise 4.9, show that

E[el’Y] — e0'2[2/2+l’,u. (180)

4.2. Two important theorems about MGFs. The power series expansion (168) of MGF may not be
valid in general. The following theorem gives a sufficient condition for which such an expansion is
true. We omit its proof in this lecture.

Theorem 4.10. Let X be a RV. Suppose there exists a constant h > 0 such that E[e'X] < co for all x €
(—=h, h). Then the kth moment E[X¥] exists for all k = 0 and there exists a constant € > 0 such that for
allte (-¢,¢),

00 k
Ele*1= )" ELXT (181)
iz k!

For each RV X, we say its MGF exists whenever the hypothesis of the above theorem holds. One of
the consequence of the above theorem is that we can access its kth moment by taking kth derivative
of its MGF and evaluating at ¢ = 0.
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Exercise 4.11. Suppose the MGF of a RV X exists. Then show that for each integer k = 0,

d—k[E[efX] =E[X")
drk t=0 '
Example 4.12 (Poisson RV). Let X ~ Poisson(A). In Example 4.3, we have computed
Ee’X]1 =MD vreR

Differentiating by ¢ and evaluating at ¢ = 0, we get

d
E[X] = —e’uel_l)| = e’“e[‘”]tet| =
dt =0 t=0
We can also compute its second moment as
d? d
[E[XZ] — _e/l(et_l) — _Ae/l(et_l)+t :Ae/l(et_l)-'—t(let"‘l)‘ :/’L(A‘l‘l)
dr? t=0 dt £=0 t=0

This also implies that
Var(X) = E[X?] -E[X]?=AA+1)-A* = A.

Example 4.13 (Exponential RV). Let X ~ Exp(A). Our calculation in Example 4.6 implies that

Ele’*]=—"— te(-ALA.
e =" ( )
We can compute the first and second moment of X:
a A A 1
E[X]= — | = > | =—
dtA—tli=0 A—-0*lt=0 A
, d*> A d A 21
E[X“] =

_WA—tL:o:%(A—t)ZL:o: A—13 =0 A2

In fact, by recognizing A/ (A — ) as a geometric series,

1
Ele'X] = =1+ + @A)+ @A)+
11—t/

WA 20UA% , 3UAS 4
+ r+ =+ t
1! 2! 3!
Hence by comparing with (181), we conclude that E[X¥] = k!/AK for all k= 0.

4 eee,

21

(182)

(183)

(184)

(185)

(186)

(187)

(188)

(189)

(190)

(191)

A

The second theorem for MGFs is that they determine the distribution of RVs. This will be critically

used later in the proof of the central limit theorem.

Theorem 4.14. Let X, Y, and X, for n = 1 be RVs whose MGF:s exist.

(i) (Uniqueness) Suppose Ele’X] = E[e'Y] for all sufficiently small t. Then P(X < s) =P(Y < s) for all

seR.

(ii) (Continuity) Supposelim,,_.oE[e'*"] = E[e'X] for all sufficiently small t and that E[e'*] is contin-
uousatt=0. ThenP(X, < s) —» P(X <) forall s such thatP(X < x) is continuous at x = s.
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4.3. MGF of sum of independent RVs. One of the nice properties of MGFs is the following factoriza-
tion for sums of independent RVs.

Proposition 4.15. Let X,Y be independent RVs. Then

E[e'X* Y] = E[e' E[e"Y]. (192)

If you believe that the RVs e’X and e’" are independent, then the proof of the above result is one-
line:

Ele"** ] =E[e'e'Y] = E[e'*]E[e'"]. (193)
In general, it is a special case of the following result.

Proposition 4.16. Let X,Y be independent RVs. Then for any integrable functions g1,8> : R — R, we
have

Elg1(X)g2(Y)] = E[g1(X)]E[g2(Y)]. (194)

Proof. 1If X,Y are continuous RV,

Elg1(X)g2(Y)] =f f giW&gWfxy(x,y)dxdy (195)

=f f g1 (g fx() fr(y)dxdy (196)

=f 81(x) fx (x) (f gz(y)fy(y)) dy (197)

=[E[g2(Y)]f 81(x) fx (%) dx (198)

=E[g1(X)IE[g2(Y)]. (199)

For discrete RVs, use summation and PMF instead of integral and PDE O

Exercise 4.17 (Binomial RV). Let X ~ Binomial(#n, p). Use the MGF of Bernoulli RV and Proposition
4.15 to show that

Ele'X1=(1-p+e'p). (200)

Example 4.18 (Sum of independent Poisson RVs). Let X; ~ Poisson(A;) and X, ~ Poisson(A;) be in-
dependent Poisson RVs. Let Y = X + X». Using Exercise 4.3, we have

[E[efY] — [E[etXl][E[etXZ] — e(ﬂ,1+){2)(6[—1)‘ (201)

Notice that the last expression is the MGF of a Poisson RV with rate 1, + 1,. By the Uniqueness of
MGEF (Theorem 4.14 (i)), we conclude that Y ~ Poisson(1; + A,). A

Exercise 4.19 (Sum of independent normal RVs). Let X; ~ N (pl,cr%) and X ~ N (pz,cr%) be indepen-
dent normal RVs.

(i) Show that E[e"™1*X2)] = exp[(02 + 03) 1212 + t(p1 + p2)].
(ii) Conclude that X; + Xo ~ N (i1 + p2, 0% + 03).
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4.4. Sum of random number of independent RVs. Suppose X, X>,--- are independent and iden-
tically distributed (i.i.d.) RVs and let N be another independent RV taking values in nonnegative
integers (e.g., Binomial). For anew RV Y by

Y=X1+Xo0+ -+ Xp. (202)

Note that we are summing a random number of X;’s, so there are two sources of randomness that
determines Y. As usual, we use conditioning to study such RVs. For instance,

E[YIN=n]=E[Xy+ -+ X,] =E[Xj] +--- +E[X,,] = nEX; (203)
Var(Y | N = n) =Var(X; +---+ X;;) = Var(Xy) +--- + Var(X,,) = nVar(X;). (204)

Hence iterated expectation gives
E[Y] =E[E[Y[N]] = E[NE[X1]] = E[X;]E[N]. (205)

On other other hand, law of total variance gives

Var(Y) = E[Var(Y | N)] + Var(E[Y | N]) (206)
= F[NVar(X;)] + Var(NE[X;]) (207)
= Var(X7)E[N] + E[X;]? Var(N). (208)

Furthermore, can we also figure out the MGF of Y? After all, MGF is an expectation so we can also

get it by iterated expectation. First we compute the conditional version. Denoting Mx () = E[e'X],
Ele’ [N = n] = E[e" X1+ ) = F[eX1... gXn) (209)
=E[e"M]---E[eX"] = E[e"™]" = My, (1)" (210)
= 108 Mx (1), (211)

The last line is the trick here. Now the iterated expectation gives
Ele'Y] = E[E[e’Y | N]] = E[e(108Mx (DN], (212)
Note that the last expression is nothing but the MFG of N evaluated at log M, () instead of ¢. Hence
Ele'Y] = My (log My, (t)). (213)
Let us summarize what have obtained so far.

Proposition 4.20. Let X1, X>,--- be i.i.d. RVs and let N be another independent RV which takes values
from nonnegative integers. Let Y = Z],XZO Xp. Denote the MGF of any RV Z by M7 (t). Then we have

E[Y]=E[NIE[X1]] (214)
Var[Y] = Var(X;)E[N] + E[X;]? Var(N) (215)
My (1) = Mn(log Mx, (). (216)

Example 4.21. Let X; ~ Exp(A) for i = 0 and let N ~ Poisson(A). Suppose all RVs are independent.
Define Y = Z;CVZI X;. Then

E[Y]=E[NIE[X3] =A/A=1, (217)

) AA 2
Var(Y) = Var(X)E[N] + E[X;]? Var(N) = <= +
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On other hand, recall that My, (1) = % and My (1) = e*¢'~1_ Hence
So we know everything about Y. Knowing the MGF of Y, we could get all the moments of Y. For
instance,

Elvi= Lots| e AAZ0FAL (220)
cdr =0 A-02 l=0

A

Exercise 4.22. Let X;,X>,--- be i.i.d. RVs and let N be another independent RV which takes values
from nonnegative integers. Let Y = ZkN:() Xk. Denote the MGF of any RV Z by M(t). Using the fact
that My (f) = My(log Mx, (1)), derive

E[Y] =E[NIE[X,], (221)
Var[Y] = Var(X;)E[N] + E[X;]? Var(N). (222)

Example 4.23. Let X; ~ Exp(A) for i = 0 and let N ~ Geom(p). Let Y = 21127:1 Xk. Suppose all RVs are
independent. Recall that
t

pe

A
Mxl(t)—ﬂ, MNU)—w-

(223)

Hence
A
Pii  _ pA __pA
1-(1-p)&~ A-0-A0-p) pA-t
Notice that this is the MGF of an Exp(pA) variable. Thus by uniqueness, we conclude that ¥ ~
Exp(pA). If you remember, sum of k independent Exp(1) RVs were not an exponential RV (its dis-

tribution is Erlang(k, 1). See Exercise 1.19 in Note 1). But as we have seen in this example, if you sum
arandom number of independent exponentials, they could by exponential again. A

My (8) = (224)

Exercise 4.24. Let X; ~ Geom(q) for i = 0 and let N ~ Geom(p). Suppose all RVs are independent. Let
Y =37 X
(i) Show that the MGF of Y is given by
t
g p— L— (225)
1-(1-pge’

(ii) Conclude that Y ~ Geom(pq).
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