Matrix and Tensor Factorization Models: Applications, Algorithms, and Theory

Hanbaek Lyu

Department of Mathematics, IFDS University of Wisconsin - Madison

Partially supported by NSF DMS #2206296 and #2010035

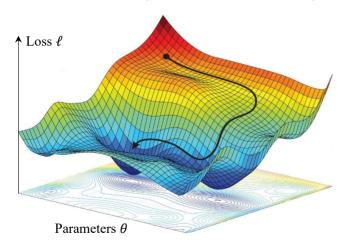
Krafton

June 10, 2022

Outline

- Introduction
- 2 BCD with Diminishing Radius and Proximal Regularization
 - Stochastic/Online optimization algorithms
 - Proof ideas

- Optimization is a fundamental task whenever there is data to be explained by a model with parameters
- ▶ Data \approx Model(θ)
 - e.g., Regression models (linear, logistic,..), latent variable models (matrix/tensor factorization,..), deep neural networks (CNN, RNN, GNN,..)



• How to chose optimal parameter $oldsymbol{ heta}^*$?

$$\theta^* = \underset{\theta \in \Theta}{\operatorname{argmin}} \ \ell(\mathsf{Data}, \theta)$$

 $\ell = \text{Loss function}$

 Θ = Parameter space

- ► In this talk:
 - Data: images, texts, graphs, video frames
 - Models: matrix/tensor factorization (latent variable models)
 - Optimization: block coordinate descent, SGD, SMM (stochastic majorization-minimization)
 - Theory : Convergence to stationary points, non-unique global min, rate of convergecne

- ► In this talk:
 - Data: images, texts, graphs, video frames
 - Models: matrix/tensor factorization (latent variable models)
 - **Optimization**: block coordinate descent, SGD, SMM (stochastic majorization-minimization)
 - Theory : Convergence to stationary points, non-unique global min, rate of convergecne
- ► Models:

- ► In this talk:
 - Data : images, texts, graphs, video frames
 - Models: matrix/tensor factorization (latent variable models)
 - **Optimization**: block coordinate descent, SGD, SMM (stochastic majorization-minimization)
 - Theory: Convergence to stationary points, non-unique global min, rate of convergecne
- ► Models:
 - Nonnegative Matrix Factorization (Dictionary learning for vector signals)

$$\min_{\mathbf{W} \in \mathbb{R}_{>0}^{p \times r}, \mathbf{H} \in \mathbb{R}_{>0}^{r \times n}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$$

- ► In this talk:
 - Data: images, texts, graphs, video frames
 - Models: matrix/tensor factorization (latent variable models)
 - **Optimization**: block coordinate descent, SGD, SMM (stochastic majorization-minimization)
 - Theory: Convergence to stationary points, non-unique global min, rate of convergecne
- ► Models:
 - Nonnegative Matrix Factorization (Dictionary learning for vector signals)

$$\min_{\mathbf{W} \in \mathbb{R}_{\geq 0}^{p \times r}, \mathbf{H} \in \mathbb{R}_{\geq 0}^{r \times n}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$$

• Nonnegative CP Decomposition — (Dictionary learning for multimodal signals)

$$\min_{\mathbf{U}^{(1)} \in \mathbb{R}^{a \times r}_{> 0}, \mathbf{U}^{(2)} \in \mathbb{R}^{b \times r}_{> 0}, \mathbf{U}^{(3)} \in \mathbb{R}^{c \times r}_{> 0}} \|\mathbf{X} - \mathsf{Out}(\mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \mathbf{U}^{(3)})\|_F^2$$

- In this talk:
 - Data: images, texts, graphs, video frames
 - Models: matrix/tensor factorization (latent variable models)
 - **Optimization**: block coordinate descent, SGD, SMM (stochastic majorization-minimization)
 - Theory : Convergence to stationary points, non-unique global min, rate of convergecne
- ► Models:
 - Nonnegative Matrix Factorization (Dictionary learning for vector signals)

$$\min_{\mathbf{W} \in \mathbb{R}_{\geq 0}^{p \times r}, \mathbf{H} \in \mathbb{R}_{\geq 0}^{r \times n}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$$

Nonnegative CP Decomposition — (Dictionary learning for multimodal signals)

$$\min_{\mathbf{U}^{(1)} \in \mathbb{R}^{a \times r}_{>0}, \mathbf{U}^{(2)} \in \mathbb{R}^{b \times r}_{>0}, \mathbf{U}^{(3)} \in \mathbb{R}^{c \times r}_{>0}} \|\mathbf{X} - \mathsf{Out}(\mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \mathbf{U}^{(3)})\|_F^2$$

• Supervised Dictionary Learning — (Learning class-discriminating dictionary)

$$\min_{\mathbf{W} \in \mathbb{R}_{\geq 0}^{p \times r}, \mathbf{H} \in \mathbb{R}_{\geq 0}^{r \times n}, \boldsymbol{\beta} \in \mathbb{R}^r} NLL(\mathbf{Y}, \mathsf{logistic}(\mathbf{W}^T \mathbf{X}, \boldsymbol{\beta})) + \xi \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$$

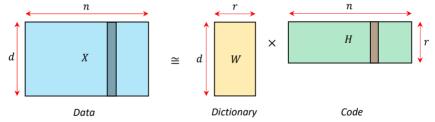
► Least Squares: Classical setting for linear regression

$$\min_{\mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$$

► Least Squares: Classical setting for linear regression

$$\min_{\mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$$

• Data \approx Linear combination of basis features

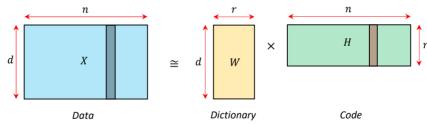


cols. of W

► Least Squares: Classical setting for linear regression

$$\min_{\mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$$

Data ≈ Linear combination of basis features



• Convex optimization problem with closed-form solution (when \mathbf{W} has full-rank):

$$\hat{\mathbf{H}} = (\mathbf{W}^T \mathbf{W})^{-1} \mathbf{W}^T \mathbf{X}$$

▶ Nonnegative Least Squares: Require nonnegative linear representation over the basis

$$\min_{\mathbf{H} \in \mathbb{R}_{\geq 0}^{r \times n}} \left[f(\mathbf{H}) := \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 \right]$$

▶ Nonnegative Least Squares: Require nonnegative linear representation over the basis

$$\min_{\mathbf{H} \in \mathbb{R}_{>0}^{r \times n}} \left[f(\mathbf{H}) := \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 \right]$$

• Convex optimization problem with convex constraint ($\Theta = \mathbb{R}^{r \times n}_{>0}$)

▶ Nonnegative Least Squares: Require nonnegative linear representation over the basis

$$\min_{\mathbf{H} \in \mathbb{R}_{>0}^{r \times n}} \left[f(\mathbf{H}) := \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 \right]$$

- Convex optimization problem with convex constraint ($\Theta = \mathbb{R}^{r \times n}_{>0}$)
- Can be solved iteratively by Projected Gradient Descent (PGD):

$$\mathbf{H}_{t+1} \leftarrow \mathsf{Proj}_{\mathbf{\Theta}} \left(\mathbf{H}_t - \eta_t \nabla f(\mathbf{H}_t) \right)$$
$$= \max \left(\mathbf{0}, \mathbf{H}_t - \eta_t \mathbf{W}^T (\mathbf{W} \mathbf{H}_n - \mathbf{X}) \right)$$

▶ Nonnegative Least Squares: Require nonnegative linear representation over the basis

$$\min_{\mathbf{H} \in \mathbb{R}_{>0}^{r \times n}} \left[f(\mathbf{H}) := \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 \right]$$

- Convex optimization problem with convex constraint ($\Theta = \mathbb{R}^{r \times n}_{>0}$)
- Can be solved iteratively by Projected Gradient Descent (PGD):

$$\mathbf{H}_{t+1} \leftarrow \mathsf{Proj}_{\mathbf{\Theta}} \left(\mathbf{H}_t - \eta_t \nabla f(\mathbf{H}_t) \right)$$

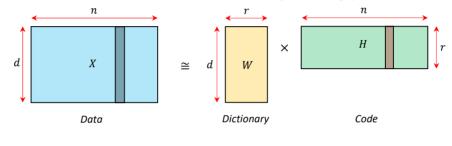
= $\max \left(\mathbf{0}, \mathbf{H}_t - \eta_t \mathbf{W}^T (\mathbf{W} \mathbf{H}_n - \mathbf{X}) \right)$

• PGD finds ' ε -accuracte' global minimizer within $O(\varepsilon^{-1})$ iterations

▶ Q: What if we don't know what basis features **W** to use?

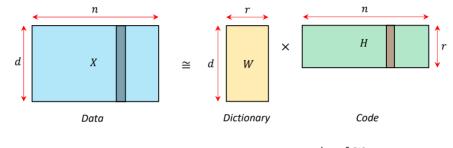
- Q: What if we don't know what basis features **W** to use?
 - Simultaneously find the basis **W** and the linear representation **H** for the data **X**?

- Q: What if we don't know what basis features **W** to use?
 - Simultaneously find the basis W and the linear representation H for the data X?
- Matrix factorization is a fundamental tool in dictionary learning problems.



Data \approx Linear combination of latent features

- Q: What if we don't know what basis features W to use?
 - Simultaneously find the basis W and the linear representation H for the data X?
- ► Matrix factorization is a fundamental tool in dictionary learning problems.

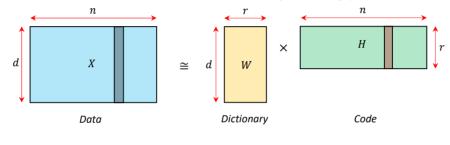


Data \approx Linear combination of latent features

Formulated as a nonconvex optimization problem:

$$\begin{cases} \min_{\mathbf{W},\mathbf{H}} & \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 & \text{(Reconstruction error)} \\ & \text{subject to} & \mathbf{W} \in \mathcal{C}, \mathbf{H} \in \mathcal{C}' & \text{(Constraints)} \end{cases}$$

- Q: What if we don't know what basis features W to use?
 - Simultaneously find the basis W and the linear representation H for the data X?
- ► Matrix factorization is a fundamental tool in dictionary learning problems.



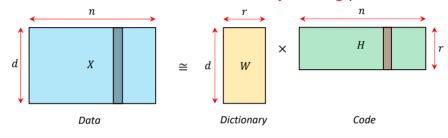
Data ≈ Linear combination of latent features

Formulated as a nonconvex optimization problem:

$$\begin{cases} \min_{\mathbf{W},\mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 & \text{(Reconstruction error)} \\ \text{subject to } \mathbf{W} \in \mathcal{C}, \mathbf{H} \in \mathcal{C}' & \text{(Constraints)} \end{cases}$$

• Unconstrained MF ($\mathscr{C} = \mathbb{R}^{d \times r}$, $\mathscr{C}' = \mathbb{R}^{r \times n}$): Global min attained by SVD

- Q: What if we don't know what basis features W to use?
 - Simultaneously find the basis W and the linear representation H for the data X?
- ► Matrix factorization is a fundamental tool in dictionary learning problems.



Data \approx Linear combination of latent features

Formulated as a nonconvex optimization problem:

$$\begin{cases} \min_{\mathbf{W},\mathbf{H}} & \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 & \text{(Reconstruction error)} \\ & \text{subject to} & \mathbf{W} \in \mathcal{C}, \mathbf{H} \in \mathcal{C}' & \text{(Constraints)} \end{cases}$$

- Unconstrained MF ($\mathscr{C} = \mathbb{R}^{d \times r}$, $\mathscr{C}' = \mathbb{R}^{r \times n}$): Global min attained by SVD
- Nonnegative Matrix Factorization (NMF): $\mathscr{C} = \mathbb{R}^{d \times r}_{\geq 0}$, $\mathscr{C}' = \mathbb{R}^{r \times n}_{\geq 0}$

► How do we solve NMF?

$$\min_{\mathbf{W} \in \mathbb{R}_{\geq 0}^{d \times r}, \mathbf{H}_{\geq 0}^{r \times n}} \left[f(\mathbf{W}, \mathbf{H}) := \|\mathbf{X} - \mathbf{W} \mathbf{H}\|_F^2 \right]$$

► How do we solve NMF?

$$\min_{\mathbf{W} \in \mathbb{R}_{\geq 0}^{d \times r}, \mathbf{H}_{\geq 0}^{r \times n}} \left[f(\mathbf{W}, \mathbf{H}) := \|\mathbf{X} - \mathbf{W} \mathbf{H}\|_F^2 \right]$$

• Can't find both W and H at the same time, so alternate!

$$\mathbf{H}_{t+1} \leftarrow \underset{\mathbf{H} \in \mathbb{R}_{\geq 0}^{r \times n}}{\operatorname{argmin}} f(\mathbf{W}_t, \mathbf{H}) \qquad (NLS)$$

$$\mathbf{W}_{t+1} \leftarrow \underset{\mathbf{W} \in \mathbb{R}_{> 0}^{d \times r}}{\operatorname{argmin}} f(\mathbf{W}, \mathbf{H}_{t+1}) \qquad (NLS)$$

► How do we solve NMF?

$$\min_{\mathbf{W} \in \mathbb{R}_{\geq 0}^{d \times r}, \mathbf{H}_{\geq 0}^{r \times n}} \left[f(\mathbf{W}, \mathbf{H}) := \|\mathbf{X} - \mathbf{W} \mathbf{H}\|_F^2 \right]$$

• Can't find both **W** and **H** at the same time, so alternate!

$$\begin{aligned} \mathbf{H}_{t+1} \leftarrow & \underset{\mathbf{H} \in \mathbb{R}_{\geq 0}^{r \times n}}{\operatorname{argmin}} f(\mathbf{W}_t, \mathbf{H}) & (NLS) \\ \mathbf{W}_{t+1} \leftarrow & \underset{\mathbf{W} \in \mathbb{R}_{\geq 0}^{d \times r}}{\operatorname{argmin}} f(\mathbf{W}, \mathbf{H}_{t+1}) & (NLS) \end{aligned}$$

Block Coordinate Descent for NMF (a.k.a. Alternating Least Squares)

How do we solve NMF?

$$\min_{\mathbf{W} \in \mathbb{R}_{\geq 0}^{d \times r}, \mathbf{H}_{\geq 0}^{r \times n}} \left[f(\mathbf{W}, \mathbf{H}) := \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 \right]$$

Can't find both W and H at the same time, so alternate!

$$\mathbf{H}_{t+1} \leftarrow \underset{\mathbf{H} \in \mathbb{R}_{\geq 0}^{r \times n}}{\operatorname{argmin}} f(\mathbf{W}_t, \mathbf{H}) \qquad (NLS)$$

$$\mathbf{W}_{t+1} \leftarrow \underset{\mathbf{W} \in \mathbb{R}_{> 0}^{d \times r}}{\operatorname{argmin}} f(\mathbf{W}, \mathbf{H}_{t+1}) \qquad (NLS)$$

- Block Coordinate Descent for NMF (a.k.a. Alternating Least Squares)
- NOT guaranteed to converge to global optimum (will come back to this point later)

Topic modeling (20 News Grpups)

- ▶ Dictionary Learning: Learn r basis vectors from a given data set of 'vectors'
 - 'vectors' may represent images, texts, time-serieses, graphs, etc.
 - Provides a compressed representation of complex objects using a few dictionary elements.

>>>> data_cleaned[i] Anyone know what would cause my IIcx to not turn on when I hit the keyboard switch? The one in the back of the machine doesn't work either...
The only way I can turn it on is to unplug the machine for a few minutes, then plug it back in and hit the power switch in the back immediately...
Sometimes this doesn't even work for a long time...

I remember hearing about this problem a long time ago, and that a logic board failure was mentioned as the source of the problem...is this true?

Figure: Example of text data from the 20 News Groups (20 categories, 5616 articles)

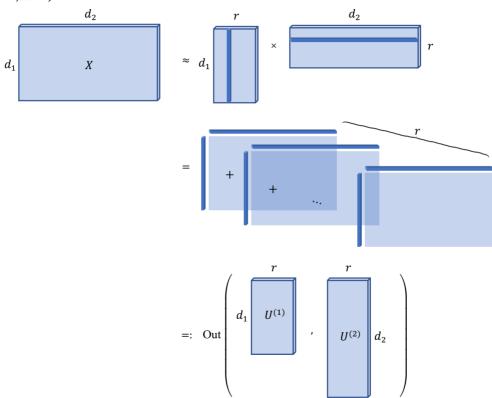
Topic modeling (20 News Grpups)

- ▶ Dictionary Learning: Learn *r* basis vectors from a given data set of 'vectors'
 - 'vectors' may represent images, texts, time-serieses, graphs, etc.
 - Provides a compressed representation of complex objects using a few dictionary elements.

Figure: Example dictionaries (topics) learned by nonnegative matrix factorization from 20 News Groups

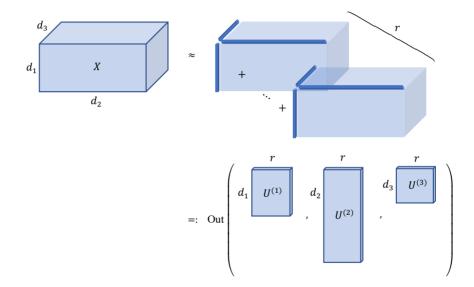
An alternative view of Matrix Factorization

 $ightharpoonup \mathbf{X} \approx \mathsf{Out}(\mathbf{U}^{(1)}, \mathbf{U}^{(2)})$



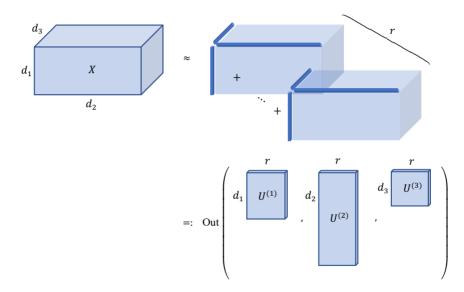
Tensor Factorization (CP decomposition)

 $ightharpoonup \mathbf{X} \approx \mathsf{Out}(\mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \mathbf{U}^{(3)})$



Tensor Factorization (CP decomposition)

 $X \approx Out(U^{(1)}, U^{(2)}, U^{(3)})$



Nonnegative CP Decomposition

$$\min_{\mathbf{U}^{(1)} \in \mathbb{R}_{\geq 0}^{d_1 \times r}, \, \mathbf{U}^{(2)} \in \mathbb{R}_{\geq 0}^{d_2 \times r}, \, \mathbf{U}^{(3)} \in \mathbb{R}_{\geq 0}^{d_3 \times r}} \|\mathbf{X} - \mathsf{Out}(\mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \mathbf{U}^{(3)})\|_F^2$$

Block Coordinate Descent for Matrix/Tensor Factorization

► Nonnegative CP Decomposition (NCPD)

$$\min_{\mathbf{U}^{(1)} \in \mathbb{R}^{d_1 \times r}_{\geq 0}, \mathbf{U}^{(2)} \in \mathbb{R}^{d_2 \times r}_{\geq 0}, \mathbf{U}^{(3)} \in \mathbb{R}^{d_3 \times r}_{\geq 0}} \|\mathbf{X} - \mathsf{Out}(\mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \mathbf{U}^{(3)})\|_F^2$$

Block Coordinate Descent for Matrix/Tensor Factorization

Nonnegative CP Decomposition (NCPD)

$$\min_{\mathbf{U}^{(1)} \in \mathbb{R}_{\geq 0}^{d_1 \times r}, \mathbf{U}^{(2)} \in \mathbb{R}_{\geq 0}^{d_2 \times r}, \mathbf{U}^{(3)} \in \mathbb{R}_{\geq 0}^{d_3 \times r}} \|\mathbf{X} - \mathsf{Out}(\mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \mathbf{U}^{(3)})\|_F^2$$

Block Coordinate Descent (BCD) for NCPD (=Alternating Least Sqaures)

$$\begin{cases} \mathbf{U}_t^{(1)} \leftarrow \operatorname{argmin} \ \|\mathbf{X} - \operatorname{Out}(\mathbf{U}, \mathbf{U}_{t-1}^{(2)}, \mathbf{U}_{t-1}^{(3)})\|_F^2 \\ \mathbf{U} \in \mathbb{R}_{\geq 0}^{d_1 \times r} \\ \mathbf{U}_t^{(2)} \leftarrow \operatorname{argmin} \ \|\mathbf{X} - \operatorname{Out}(\mathbf{U}_t^{(1)}, \mathbf{U}, \mathbf{U}_{t-1}^{(3)})\|_F^2 \\ \mathbf{U} \in \mathbb{R}_{\geq 0}^{d_2 \times r} \\ \mathbf{U}_t^{(3)} \leftarrow \operatorname{argmin} \ \|\mathbf{X} - \operatorname{Out}(\mathbf{U}_t^{(1)}, \mathbf{U}_t^{(2)}, \mathbf{U})\|_F^2 \\ \mathbf{U} \in \mathbb{R}_{\geq 0}^{d_3 \times r} \end{cases}$$

Dynamic topic modeling using NCPD for News Headlines

- \mathbf{X} = words \times time \times docs
- ▶ $\mathbf{U}^{(1)} = \text{words} \times \text{topic}, \ \mathbf{U}^{(2)} = \text{time} \times \text{topic}, \ \mathbf{U}^{(3)} = \text{docs} \times \text{topic}$

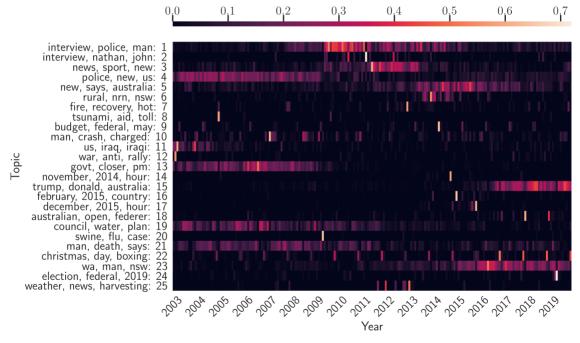


Figure: From (Kassab, Kryshchenko, L., Molitor, Needell, and Rebrova '21)

Supervised Dictionary Learning

• Given feature vectors $\mathbf{X}_{\text{data}} = [\mathbf{x}_1, ..., \mathbf{x}_n]$ and binary labels $\mathbf{Y}_{\text{labels}} = [y_1, ..., y_n]$

Supervised Dictionary Learning

- Given feature vectors $\mathbf{X}_{\text{data}} = [\mathbf{x}_1, ..., \mathbf{x}_n]$ and binary labels $\mathbf{Y}_{\text{labels}} = [y_1, ..., y_n]$
- ► Solve Classification and Dictionary learning (dimension reduction) at the same time

Supervised Dictionary Learning

- Given feature vectors $\mathbf{X}_{\text{data}} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ and binary labels $\mathbf{Y}_{\text{labels}} = [y_1, \dots, y_n]$
- ► Solve Classification and Dictionary learning (dimension reduction) at the same time

$$\min_{\mathbf{W},\mathbf{H},\boldsymbol{\beta}} \quad L(\mathbf{W},\mathbf{H},\boldsymbol{\beta}) := \underbrace{\left(-\sum_{i=1}^n \sum_{j=0}^1 \mathbf{1}(y_i = j) \log g_j(\langle \boldsymbol{\beta}, \mathbf{h}_i \rangle)\right)}_{\text{NLL of logistic regression}} + \underbrace{\xi}_{\text{Reconstruction error}} \frac{\|\mathbf{X}_{\text{data}} - \mathbf{W}\mathbf{H}\|_F^2}{\|\mathbf{X}_{\text{data}} - \mathbf{W}\mathbf{H}\|_F^2}$$
where $g_0(a) = \frac{1}{1 + e^a}$, $g_1(a) = \frac{e^a}{1 + e^a}$

Supervised Dictionary Learning

- Given feature vectors $\mathbf{X}_{\text{data}} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ and binary labels $\mathbf{Y}_{\text{labels}} = [y_1, \dots, y_n]$
- ► Solve Classification and Dictionary learning (dimension reduction) at the same time

$$\min_{\mathbf{W},\mathbf{H},\boldsymbol{\beta}} \quad L(\mathbf{W},\mathbf{H},\boldsymbol{\beta}) := \underbrace{\left(-\sum_{i=1}^n \sum_{j=0}^1 \mathbf{1}(y_i = j) \log g_j(\langle \boldsymbol{\beta}, \mathbf{h}_i \rangle)\right)}_{\text{NLL of logistic regression}} + \underbrace{\left\{ \mathbf{X}_{\text{data}} - \mathbf{W} \mathbf{H} \right\}_F^2}_{\text{Reconstruction error}}$$
 where $g_0(a) = \frac{1}{1+e^a}$, $g_1(a) = \frac{e^a}{1+e^a}$

How do we solve SDL? — BCD!

$$\begin{aligned} \mathbf{H}_{t+1} \leftarrow & \underset{\mathbf{H}}{\operatorname{argmin}} \ L(\mathbf{W}_t, \mathbf{H}, \boldsymbol{\beta}_t) & \text{(Convex)} \\ \mathbf{W}_{t+1} \leftarrow & \underset{\mathbf{W}}{\operatorname{argmin}} \ L(\mathbf{W}, \mathbf{H}_{t+1}, \boldsymbol{\beta}_t) & \text{(Convex)} \\ \boldsymbol{\beta}_{t+1} \leftarrow & \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \ L(\mathbf{W}_{t+1}, \mathbf{H}_{t+1}, \boldsymbol{\beta}) & \text{(Convex)} \end{aligned}$$

Supervised Topic Modeling for imbalanced document classification

- Fake job postings dataset
 - $\mathbf{X}_{data} = words \times postings = (2,480 \times 17,880), \ \mathbf{Y}_{label} \in \{0,1\}^{17,880}$
 - 95% are true, and 5% are fake postings (highly imbalanced)

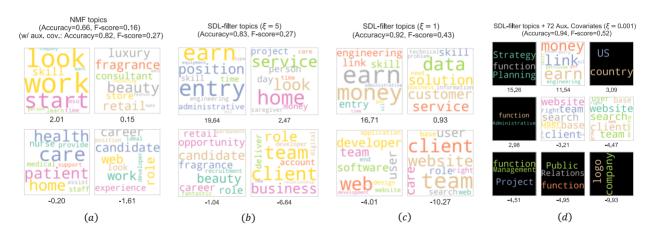


Figure: From Lee, L., Yao 2022+

Supervised Topic Modeling for imbalanced document classification

- Chest X-ray pneumonia dataset
 - $\mathbf{X}_{\text{data}} = \text{width} \times \text{height} \times \text{subjects} = (180 \times 180 \times 5, 863), \ \mathbf{Y}_{\text{label}} \in \{0, 1\}^{5,863}$

Figure: From Kermany et al. '18

Supervised Image Dictionary Learning for pneumonia detection

- Chest X-ray pneumonia dataset
 - \mathbf{X}_{data} = width × height × subjects = $(180 \times 180 \times 5, 863)$, $\mathbf{Y}_{label} \in \{0, 1\}^{5,863}$
 - Atoms with positive regression coefficient Latent feature associated with pneumonia

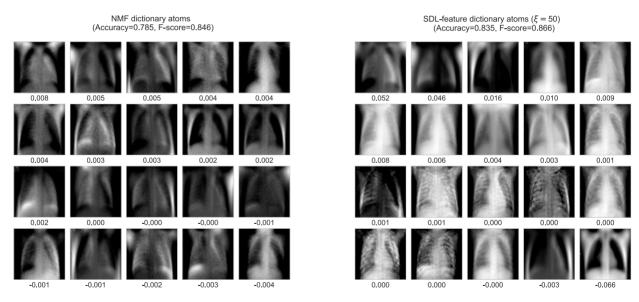


Figure: From Lee, L., Yao 2022+

Outline

- Introduction
- BCD with Diminishing Radius and Proximal Regularization
 - Stochastic/Online optimization algorithms
- Proof ideas

Multi-convex optimization and BCD

Problem setup:

- (Multi-convex objective) $f: \mathbb{R}^{I_1} \times \cdots \times \mathbb{R}^{I_m} \to [0,\infty)$ Convex in each block
- (Parameter space) $\Theta := \Theta^{(1)} \times \cdots \times \Theta^{(m)} \subseteq \mathbb{R}^{I_1} \times \cdots \times \mathbb{R}^{I_m}$ Product of convex sets
- (Constrained nonconvex problem):

$$\min_{\boldsymbol{\theta}=[\theta_1,\ldots,\theta_m]\in\mathbf{\Theta}}f(\theta_1,\ldots,\theta_m).$$

• Ex: NMF, NCPD, SDL, skip-gram, etc.

$$\min_{\mathbf{W} \in \mathbb{R}^{p \times r}_{> 0}, \mathbf{H} \in \mathbb{R}^{r \times n}_{> 0}} \left(f(\mathbf{W}, \mathbf{H}) := \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 \right)$$

Multi-convex optimization and BCD

- Problem setup:
 - (Multi-convex objective) $f: \mathbb{R}^{I_1} \times \cdots \times \mathbb{R}^{I_m} \to [0,\infty)$ Convex in each block
 - (Parameter space) $\Theta := \Theta^{(1)} \times \cdots \times \Theta^{(m)} \subseteq \mathbb{R}^{I_1} \times \cdots \times \mathbb{R}^{I_m}$ Product of convex sets
 - (Constrained nonconvex problem):

$$\min_{\boldsymbol{\theta}=[\theta_1,\ldots,\theta_m]\in\boldsymbol{\Theta}} f(\theta_1,\ldots,\theta_m).$$

Ex: NMF, NCPD, SDL, skip-gram, etc.

$$\min_{\mathbf{W} \in \mathbb{R}_{\geq 0}^{p \times r}, \mathbf{H} \in \mathbb{R}_{\geq 0}^{r \times n}} \left(f(\mathbf{W}, \mathbf{H}) := \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 \right)$$

$$\theta_n^{(i)} \in \operatorname*{argmin}_{\theta \in \Theta^{(i)}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right).$$

Multi-convex optimization and BCD

- Problem setup:
 - (Multi-convex objective) $f: \mathbb{R}^{I_1} \times \cdots \times \mathbb{R}^{I_m} \to [0,\infty)$ Convex in each block
 - (Parameter space) $\Theta := \Theta^{(1)} \times \cdots \times \Theta^{(m)} \subseteq \mathbb{R}^{I_1} \times \cdots \times \mathbb{R}^{I_m}$ Product of convex sets
 - (Constrained nonconvex problem):

$$\min_{\boldsymbol{\theta}=[\theta_1,\ldots,\theta_m]\in\boldsymbol{\Theta}}f(\theta_1,\ldots,\theta_m).$$

Ex: NMF, NCPD, SDL, skip-gram, etc.

$$\min_{\mathbf{W} \in \mathbb{R}_{\geq 0}^{p \times r}, \mathbf{H} \in \mathbb{R}_{\geq 0}^{r \times n}} \left(f(\mathbf{W}, \mathbf{H}) := \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 \right)$$

▶ Block Coordinate Descent (BCD): For n = 1,...,N and for i = 1,...,m:

$$\theta_n^{(i)} \in \operatorname*{argmin}_{\theta \in \Theta^{(i)}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right).$$

• Sequentially update each block coordinate (by PGD) while fixing the rest

$$\theta_n^{(i)} \in \operatorname*{argmin}_{\theta \in \Theta^{(i)}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right).$$

▶ Block Coordinate Descent (BCD): For n = 1,...,N and for i = 1,...,m:

$$\theta_n^{(i)} \in \operatorname*{argmin}_{\theta \in \Theta^{(i)}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right).$$

► Convex *f*:

$$\theta_n^{(i)} \in \operatorname*{argmin}_{\theta \in \Theta^{(i)}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right).$$

- ► Convex *f*:
 - Global convergence to global optimum? YES

$$\theta_n^{(i)} \in \operatorname*{argmin}_{\theta \in \Theta^{(i)}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right).$$

- ► Convex *f*:
 - Global convergence to global optimum? YES
 - Rate of convergence?

$$\theta_n^{(i)} \in \operatorname*{argmin}_{\theta \in \Theta^{(i)}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right).$$

- ► Convex *f*:
 - Global convergence to global optimum? YES
 - Rate of convergence?
 - O(1/n) for convex f, $O(\exp(-cn))$ for strongly convex f (Random Coordiante Descent, Nesterov '12 [7], Wright '15 [9])

$$\theta_n^{(i)} \in \operatorname*{argmin}_{\theta \in \Theta^{(i)}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right).$$

- ► Convex *f*:
 - Global convergence to global optimum? YES
 - Rate of convergence?
 - O(1/n) for convex f, $O(\exp(-cn))$ for strongly convex f (Random Coordiante Descent, Nesterov '12 [7], Wright '15 [9])
 - $O(1/n^2)$ for convex f, $O(\exp(-cn))$ for strongly convex f (for much better c) (Nesterov Acceleration + Random Coordinate Descent [7])

$$\theta_n^{(i)} \in \operatorname*{argmin}_{\theta \in \Theta^{(i)}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right).$$

- ► Convex *f*:
 - Global convergence to global optimum? YES
 - Rate of convergence?
 - O(1/n) for convex f, $O(\exp(-cn))$ for strongly convex f (Random Coordiante Descent, Nesterov '12 [7], Wright '15 [9])
 - $O(1/n^2)$ for convex f, $O(\exp(-cn))$ for strongly convex f (for much better c) (Nesterov Acceleration + Random Coordinate Descent [7])
- ► Nonconvex *f*:

$$\theta_n^{(i)} \in \operatorname*{argmin}_{\theta \in \Theta^{(i)}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right).$$

- ► Convex *f*:
 - Global convergence to global optimum? YES
 - Rate of convergence?
 - O(1/n) for convex f, $O(\exp(-cn))$ for strongly convex f (Random Coordiante Descent, Nesterov '12 [7], Wright '15 [9])
 - $O(1/n^2)$ for convex f, $O(\exp(-cn))$ for strongly convex f (for much better c) (Nesterov Acceleration + Random Coordinate Descent [7])
- ► Nonconvex *f*:
 - ► Global convergence to local optimum? Not in general

$$\theta_n^{(i)} \in \operatorname*{argmin}_{\theta \in \Theta^{(i)}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right).$$

- ► Convex *f*:
 - Global convergence to global optimum? YES
 - Rate of convergence?
 - O(1/n) for convex f, $O(\exp(-cn))$ for strongly convex f (Random Coordiante Descent, Nesterov '12 [7], Wright '15 [9])
 - $O(1/n^2)$ for convex f, $O(\exp(-cn))$ for strongly convex f (for much better c) (Nesterov Acceleration + Random Coordinate Descent [7])
- ► Nonconvex *f*:
 - ► Global convergence to local optimum? Not in general
 - Counterexample by Powell '73 [8] (for smooth three-block multi-convex f)

$$\theta_n^{(i)} \in \operatorname*{argmin}_{\theta \in \Theta^{(i)}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right).$$

- Convex *f*:
 - Global convergence to global optimum? YES
 - Rate of convergence?
 - O(1/n) for convex f, $O(\exp(-cn))$ for strongly convex f (Random Coordiante Descent, Nesterov '12 [7], Wright '15 [9])
 - $O(1/n^2)$ for convex f, $O(\exp(-cn))$ for strongly convex f (for much better c) (Nesterov Acceleration + Random Coordinate Descent [7])
- ► Nonconvex *f*:
 - ► Global convergence to local optimum? Not in general
 - Counterexample by Powell '73 [8] (for smooth three-block multi-convex f)
 - YES for two-block case (m=2) (Grippo, Sciandrone '00 [1])

$$\theta_n^{(i)} \in \operatorname*{argmin}_{\theta \in \Theta^{(i)}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right).$$

- ► Convex *f*:
 - Global convergence to global optimum? YES
 - Rate of convergence?
 - O(1/n) for convex f, $O(\exp(-cn))$ for strongly convex f (Random Coordiante Descent, Nesterov '12 [7], Wright '15 [9])
 - $O(1/n^2)$ for convex f, $O(\exp(-cn))$ for strongly convex f (for much better c) (Nesterov Acceleration + Random Coordinate Descent [7])
- ► Nonconvex *f*:
 - ► Global convergence to local optimum? Not in general
 - Counterexample by Powell '73 [8] (for smooth three-block multi-convex f)
 - YES for two-block case (m = 2) (Grippo, Sciandrone '00 [1])
 - YES assuming uniqueness of minimizer in each block update (Bertsekas '97)

$$\theta_n^{(i)} \in \operatorname*{argmin}_{\theta \in \Theta^{(i)}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right).$$

- ► Convex *f*:
 - Global convergence to global optimum? YES
 - Rate of convergence?
 - O(1/n) for convex f, $O(\exp(-cn))$ for strongly convex f (Random Coordiante Descent, Nesterov '12 [7], Wright '15 [9])
 - $O(1/n^2)$ for convex f, $O(\exp(-cn))$ for strongly convex f (for much better c) (Nesterov Acceleration + Random Coordinate Descent [7])
- ► Nonconvex *f*:
 - ► Global convergence to local optimum? Not in general
 - Counterexample by Powell '73 [8] (for smooth three-block multi-convex f)
 - YES for two-block case (m=2) (Grippo, Sciandrone '00 [1])
 - YES assuming uniqueness of minimizer in each block update (Bertsekas '97)
 - ► Rate of convergence? No known general results

▶ BCD-PR (Proximal Regularization) : For n = 1,...,N and for i = 1,...,m:

$$\theta_n^{(i)} \in \operatorname*{argmin}_{\theta \in \Theta^{(i)}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right) + \lambda_n \|\theta - \theta_{n-1}^{(i)}\|^2$$

▶ BCD-PR (Proximal Regularization) : For n = 1,...,N and for i = 1,...,m:

$$\theta_n^{(i)} \in \operatorname*{argmin} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right) + \lambda_n \|\theta - \theta_{n-1}^{(i)}\|^2$$

▶ BCD-DR (Diminishing Radius) : For n = 1,...,N and for i = 1,...,m:

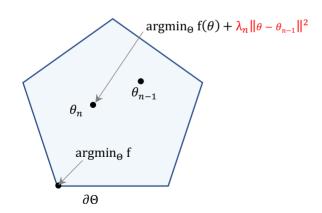
$$\theta_n^{(i)} \in \underset{\theta \in \Theta^{(i)}, \|\theta - \theta_{n-1}^{(i)}\| \le r_n}{\operatorname{argmin}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right)$$

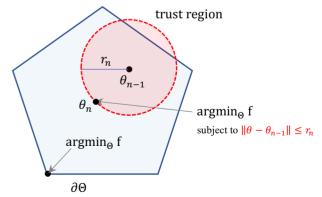
▶ BCD-PR (Proximal Regularization) : For n = 1,...,N and for i = 1,...,m:

$$\theta_n^{(i)} \in \operatorname*{argmin}_{\theta \in \Theta^{(i)}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right) + \lambda_n \|\theta - \theta_{n-1}^{(i)}\|^2$$

▶ BCD-DR (Diminishing Radius) : For n = 1,...,N and for i = 1,...,m:

$$\theta_n^{(i)} \in \underset{\theta \in \Theta^{(i)}, \|\theta - \theta_{n-1}^{(i)}\| \le r_n}{\operatorname{argmin}} f\left(\theta_n^{(1)}, \cdots, \theta_n^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right)$$





► Nonconvex *f*:

- ► Nonconvex *f*:
 - ► Global convergence to local optimum?

- ► Nonconvex *f*:
 - ► Global convergence to local optimum?
 - YES for BCD-PR with $\lambda_n = O(1)$ (Grippo and Sciandrone '00 [1])

- ► Nonconvex *f*:
 - Global convergence to local optimum?
 - YES for BCD-PR with $\lambda_n = O(1)$ (Grippo and Sciandrone '00 [1])
 - YES for Prox-linear variants with $\lambda_n = O(1)$ (Xu and Yin '13 [10])

- ► Nonconvex *f*:
 - Global convergence to local optimum?
 - YES for BCD-PR with $\lambda_n = O(1)$ (Grippo and Sciandrone '00 [1])
 - YES for Prox-linear variants with $\lambda_n = O(1)$ (Xu and Yin '13 [10])
 - BCD-DR has not been studied before

- ► Nonconvex *f*:
 - Global convergence to local optimum?
 - YES for BCD-PR with $\lambda_n = O(1)$ (Grippo and Sciandrone '00 [1])
 - YES for Prox-linear variants with $\lambda_n = O(1)$ (Xu and Yin '13 [10])
 - BCD-DR has not been studied before
 - ▶ Rate of convergence to local optimum? No known general results

- ► Nonconvex *f*:
 - Global convergence to local optimum?
 - YES for BCD-PR with $\lambda_n = O(1)$ (Grippo and Sciandrone '00 [1])
 - YES for Prox-linear variants with $\lambda_n = O(1)$ (Xu and Yin '13 [10])
 - BCD-DR has not been studied before
 - ▶ Rate of convergence to local optimum? No known general results
 - \bullet Some results known for Prox-linear variants assuming Kurdyka-Lojasiewicz property (Xu, Yin '13 [10])

- ► Nonconvex *f*:
 - Global convergence to local optimum?
 - YES for BCD-PR with $\lambda_n = O(1)$ (Grippo and Sciandrone '00 [1])
 - YES for Prox-linear variants with $\lambda_n = O(1)$ (Xu and Yin '13 [10])
 - BCD-DR has not been studied before
 - ► Rate of convergence to local optimum? No known general results
 - \bullet Some results known for Prox-linear variants assuming Kurdyka-Lojasiewicz property (Xu, Yin '13 [10])
- **Def.** $\theta^* \in \Theta$ is an ε -approxiate stationary point of f over Θ if

$$-\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\langle \nabla f(\boldsymbol{\theta}^*), \frac{(\boldsymbol{\theta} - \boldsymbol{\theta}^*)}{\|\boldsymbol{\theta} - \boldsymbol{\theta}^*\|} \right\rangle \leq \sqrt{\varepsilon}$$

- ► Nonconvex *f*:
 - Global convergence to local optimum?
 - YES for BCD-PR with $\lambda_n = O(1)$ (Grippo and Sciandrone '00 [1])
 - YES for Prox-linear variants with $\lambda_n = O(1)$ (Xu and Yin '13 [10])
 - BCD-DR has not been studied before
 - ▶ Rate of convergence to local optimum? No known general results
 - Some results known for Prox-linear variants assuming Kurdyka-Lojasiewicz property (Xu, Yin '13 [10])

Def. $\theta^* \in \Theta$ is an ε -approxiate stationary point of f over Θ if

$$-\inf_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}\left\langle\nabla f(\boldsymbol{\theta}^*),\frac{(\boldsymbol{\theta}-\boldsymbol{\theta}^*)}{\|\boldsymbol{\theta}-\boldsymbol{\theta}^*\|}\right\rangle\leq\sqrt{\varepsilon}$$

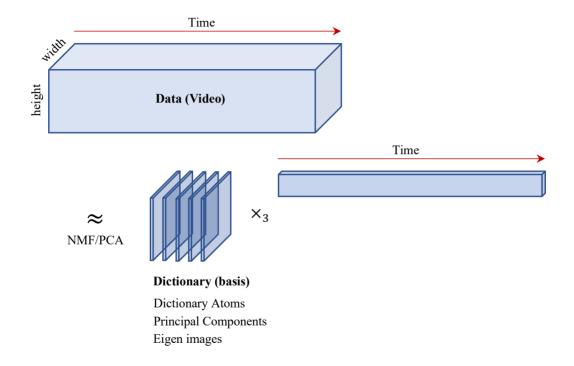
Theorem (L. '21+, L. and Kwon '22+)

Under mild conditions, BCD-DR and BCD-PR converges to the set of stationary points of f at rate O(1/n); They find ε -approx. stationary point within $O(\varepsilon^{-1}(\log \varepsilon^{-1})^2)$ iterations.

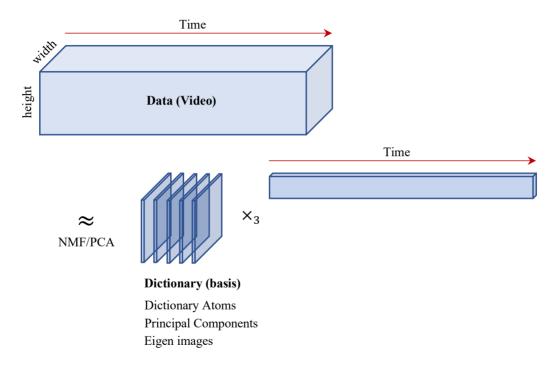
Outline

- Introduction
- 2 BCD with Diminishing Radius and Proximal Regularization
- Stochastic/Online optimization algorithms
- Proof ideas

Dictionary Learning from Video Frames



Dictionary Learning from Video Frames

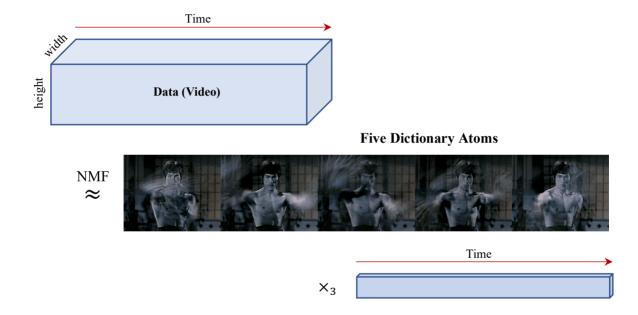


Entire video frames are processed at once (batch processing)

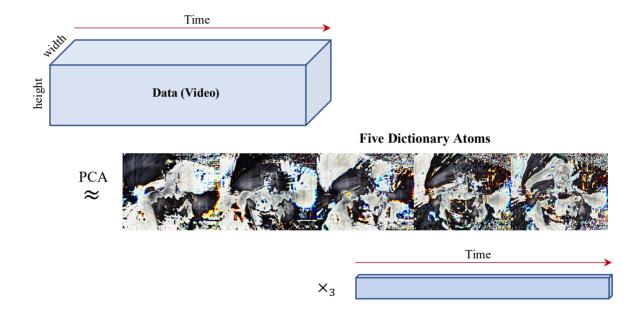
A Toy Example Video

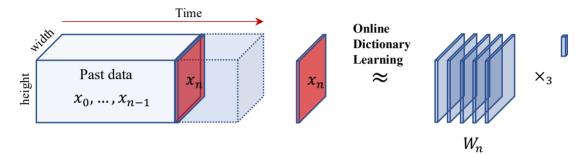
Figure: Bruce Lee (doing his stuff)

Dictionary Learning from Video Frames

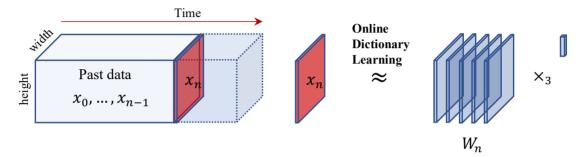


Dictionary Learning from Video Frames

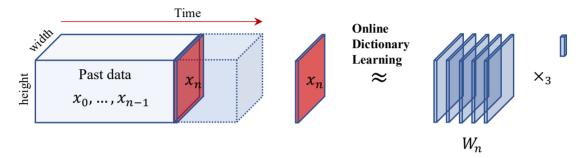




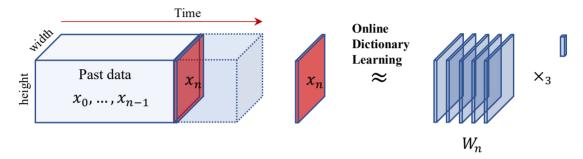
Instead of processing the entire frames at once, can we process one image at a time to learn the dictionary? (mini-batch processing)



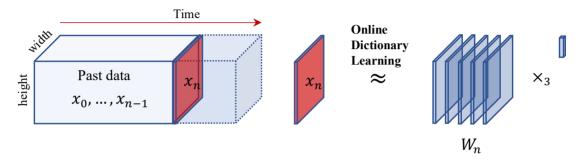
► Why do 'online learning'?



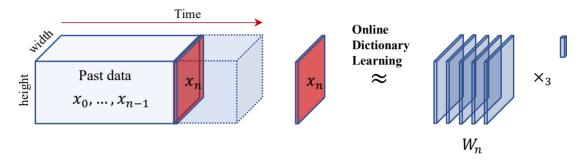
- ► Why do 'online learning'?
 - Reduced per-iteration computational cost



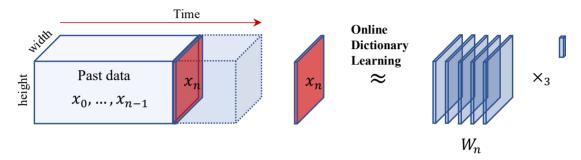
- ► Why do 'online learning'?
 - Reduced per-iteration computational cost
 - Reduced memory requirement (no need to hold the entire data)



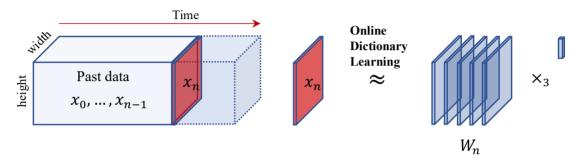
- ► Why do 'online learning'?
 - Reduced per-iteration computational cost
 - Reduced memory requirement (no need to hold the entire data)
 - Full data may not be available



- ► Why do 'online learning'?
 - Reduced per-iteration computational cost
 - Reduced memory requirement (no need to hold the entire data)
 - Full data may not be available
 - May learn additional temporal features



- ► Why do 'online learning'?
 - Reduced per-iteration computational cost
 - Reduced memory requirement (no need to hold the entire data)
 - Full data may not be available
 - May learn additional temporal features
 - · May learn new trending features



- ► Why do 'online learning'?
 - Reduced per-iteration computational cost
 - Reduced memory requirement (no need to hold the entire data)
 - Full data may not be available
 - · May learn additional temporal features
 - · May learn new trending features
- ▶ Algorithms: Stochastic GD, Stochastic PGD, Stochastic MM, etc.

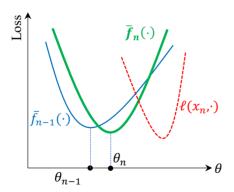
Empirical Loss Minimization

Upon arrival of
$$\mathbf{x}_n$$
: $\boldsymbol{\theta}_n \in \underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\operatorname{argmin}} \left(\bar{f}_n(\boldsymbol{\theta}) := (1 - w_n) \underbrace{\bar{f}_{n-1}(\boldsymbol{\theta})}_{\text{old loss}} + w_n \underbrace{\boldsymbol{\ell}(\mathbf{x}_n, \boldsymbol{\theta})}_{\text{new loss}} \right)$,

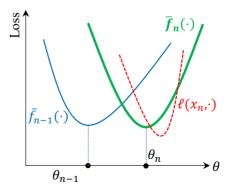
Empirical Loss Minimization

Upon arrival of
$$\mathbf{x}_n$$
: $\boldsymbol{\theta}_n \in \underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\operatorname{argmin}} \left(\bar{f}_n(\boldsymbol{\theta}) := (1 - w_n) \underbrace{\bar{f}_{n-1}(\boldsymbol{\theta})}_{\text{old loss}} + w_n \underbrace{\ell(\mathbf{x}_n, \boldsymbol{\theta})}_{\text{new loss}} \right)$,

▶ Depending on the data sequence $(\mathbf{x}_n)_{n\geq 1}$ and adaptivity weights $(w_n)_{n\geq 1}$, the optimization landscape \bar{f}_n changes over time



Slow adaptation

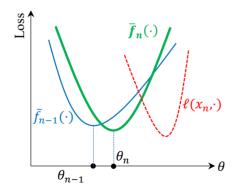


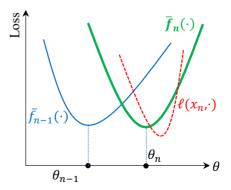
Fast adaptation

Empirical Loss Minimization

Upon arrival of
$$\mathbf{x}_n$$
: $\boldsymbol{\theta}_n \in \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmin}} \left(\bar{f}_n(\boldsymbol{\theta}) := (1 - w_n) \underbrace{\bar{f}_{n-1}(\boldsymbol{\theta})}_{\text{old loss}} + w_n \underbrace{\ell(\mathbf{x}_n, \boldsymbol{\theta})}_{\text{new loss}} \right)$,

- ▶ Depending on the data sequence $(\mathbf{x}_n)_{n\geq 1}$ and adaptivity weights $(w_n)_{n\geq 1}$, the optimization landscape \bar{f}_n changes over time
 - Fast-adapting $w_n \Rightarrow$ learn short-time scale features (could be noisy)





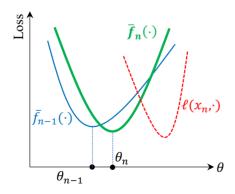
Slow adaptation

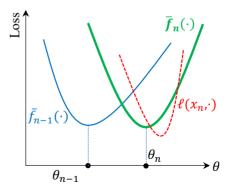
Fast adaptation

Empirical Loss Minimization

Upon arrival of
$$\mathbf{x}_n$$
: $\boldsymbol{\theta}_n \in \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmin}} \left(\bar{f}_n(\boldsymbol{\theta}) := (1 - w_n) \underbrace{\bar{f}_{n-1}(\boldsymbol{\theta})}_{\text{old loss}} + w_n \underbrace{\ell(\mathbf{x}_n, \boldsymbol{\theta})}_{\text{new loss}} \right)$,

- Depending on the data sequence $(\mathbf{x}_n)_{n\geq 1}$ and adaptivity weights $(w_n)_{n\geq 1}$, the optimization landscape \bar{f}_n changes over time
 - Fast-adapting $w_n \Rightarrow$ learn short-time scale features (could be noisy)
 - Slow-adapting $w_n \Rightarrow$ learn long-time scale features (could be smoothed out too much)





Slow adaptation

Fast adaptation

(a) past2future + fast adaptation

(b) past2future + slow adaptation

▶ When $\theta \mapsto \ell(\mathbf{x}_n, \theta)$ is convex, empirical loss \bar{f}_n is convex for $n \ge 1$.

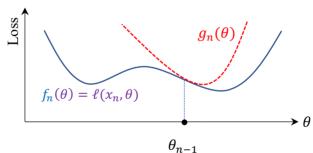
- ▶ When $\theta \mapsto \ell(\mathbf{x}_n, \theta)$ is convex, empirical loss \bar{f}_n is convex for $n \ge 1$.
- ▶ But many interesting problems assume nonconvex loss ℓ :

(Dictionary Learning)
$$\ell(\mathbf{x}_n, \boldsymbol{\theta}) = \inf_{H} \|\mathbf{x}_n - \boldsymbol{\theta}H\|^2$$

- ▶ When $\theta \mapsto \ell(\mathbf{x}_n, \theta)$ is convex, empirical loss \bar{f}_n is convex for $n \ge 1$.
- ▶ But many interesting problems assume nonconvex loss ℓ :

(Dictionary Learning)
$$\ell(\mathbf{x}_n, \boldsymbol{\theta}) = \inf_{H} \|\mathbf{x}_n - \boldsymbol{\theta}H\|^2$$

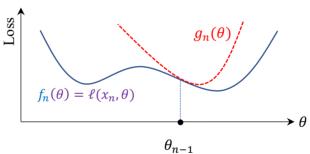
▶ Majorization-Minimization: Minimize a majorizing surrogate g_n of $\theta \mapsto \ell(\mathbf{x}_n, \theta)$:



- ▶ When $\theta \mapsto \ell(\mathbf{x}_n, \theta)$ is convex, empirical loss \bar{f}_n is convex for $n \ge 1$.
- ▶ But many interesting problems assume nonconvex loss ℓ :

(Dictionary Learning)
$$\ell(\mathbf{x}_n, \boldsymbol{\theta}) = \inf_{H} \|\mathbf{x}_n - \boldsymbol{\theta}H\|^2$$

▶ Majorization-Minimization: Minimize a majorizing surrogate g_n of $\theta \mapsto \ell(\mathbf{x}_n, \theta)$:



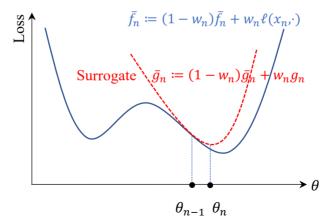
• Ex: Gradient descent — Assuming ∇f_n is L-Lipschitz,

$$\boldsymbol{\theta}_n \in \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left(\underbrace{f_n(\boldsymbol{\theta}) + \langle \nabla f_n(\boldsymbol{\theta}_{n-1}), \boldsymbol{\theta} - \boldsymbol{\theta}_{n-1} \rangle + \frac{L}{2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_{n-1}\|^2}_{\text{quadratic surrogate of } f_n \text{ at } \boldsymbol{\theta}_{n-1}} \right) \quad \Longleftrightarrow \quad \boldsymbol{\theta}_n \leftarrow \boldsymbol{\theta}_{n-1} - \frac{1}{L} \nabla f_n(\boldsymbol{\theta}_{n-1})$$

Stochastic Majorization-Minimization

Stochastic MM (SMM) — Sampling + MM + Recursive averaging

$$\begin{cases} \mathsf{Sample} \ \mathbf{x}_n \sim \pi(\cdot | \mathbf{x}_1, \dots, \mathbf{x}_{n-1}) \ ; \\ g_n \leftarrow \mathsf{Strongly} \ \mathsf{convex} \ \mathsf{majorizing} \ \mathsf{surrogate} \ \mathsf{of} \ f_n(\cdot) = \ell(\mathbf{x}_n, \cdot); \\ \boldsymbol{\theta}_n \in \mathrm{argmin}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left(\bar{g}_n(\boldsymbol{\theta}) := (1 - w_n) \underbrace{\bar{g}_{n-1}(\boldsymbol{\theta})}_{\mathsf{old} \ \mathsf{avgd} \ \mathsf{surr.}} + w_n \underbrace{g_n(\boldsymbol{\theta})}_{\mathsf{new} \ \mathsf{surr.}} \right).$$



Stochastic (Block) Majorization-Minimization

▶ Online CP-dictionary Learning (L., Strohmeier, Needell '22 [5]):

(CP-recons. error)
$$\ell(\underbrace{\mathbf{X}}_{m\text{-tensor}}, \mathbf{U} = \underbrace{[U^{(1)}, \dots, U^{(m)}]}_{\text{factor matrices}}, H) := \|\mathbf{X} - \underbrace{\mathsf{Out}(\mathbf{U})}_{\mathsf{CP-dict}} \times_{m+1} H\|_F^2$$

$$=: \mathsf{Out} \left(d_1 \underbrace{U^{(1)}}_{d_2} \underbrace{U^{(2)}}_{d_3} \underbrace{U^{(3)}}_{d_3} \right) \times \begin{bmatrix} h_1 \\ \vdots \\ h_r \end{bmatrix}$$

Stochastic (Block) Majorization-Minimization

Online CP-dictionary Learning (L., Strohmeier, Needell '22 [5]):

(CP-recons. error)
$$\ell(\underbrace{\mathbf{X}}_{m\text{-tensor}}, \mathbf{U} = \underbrace{[U^{(1)}, \dots, U^{(m)}]}_{\text{factor matrices}}, H) := \|\mathbf{X} - \underbrace{\mathsf{Out}(\mathbf{U})}_{\mathsf{CP-dict}} \times_{m+1} H\|_F^2$$

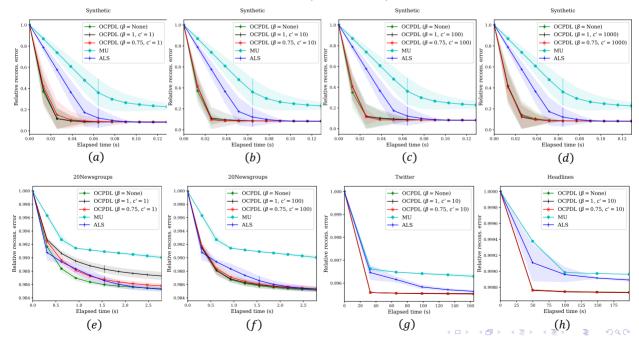
$$=: \mathsf{Out} \left(d_1 \underbrace{v^{(1)}}_{d_2} \underbrace{d_3 \underbrace{v^{(2)}}_{v^{(2)}}}_{d_3} \underbrace{d_3 \underbrace{v^{(3)}}_{v^{(3)}}}_{v^{(3)}} \right) \times \begin{bmatrix} h_1 \\ \vdots \\ h_r \end{bmatrix}$$

► (SMM+BCD-DR) Upon arrival of $\mathbf{X}_n \in \mathbb{R}^{d_1 \times \cdots \times d_m}$:

$$\begin{cases} H_n = \operatorname{argmin}_{H \in \subseteq \mathbb{R}^{r \times 1}_{\geq 0}} \ell(\mathbf{X}_n, \mathbf{U}_{n-1}, H) \\ \bar{g}_n(\mathbf{U}) = (1 - w_n) \bar{g}_{n-1}(\mathbf{U}) + w_n \ell(\mathbf{X}_n, \mathbf{U}, H_n) & (m\text{-block multi-convex}) \end{cases}$$
 for $i = 1, \dots, m$:
$$U_n^{(i)} \in \operatorname{argmin}_{\substack{U \in \mathbb{R}^{d_i \times r}_{\geq 0} \\ |U - U_{n-1}^{(i)}| | \leq c' w_n}} \bar{g}_n(U_n^{(1)}, \dots, U_n^{(i-1)}, U, U_{n-1}^{(i+1)}, \dots, U_{n-1}^{(m)}).$$

Stochastic (Block) Majorization-Minimization

- ▶ Online CP-dictionary Learning (L., Strohmeier, Needell '22 [5]):
 - Only bounded memory to learn from infinitely many samples
 - Cheaper per-iteration cost than offline methods
 - Converges faster than offline methods (empirically)



Network Dictionary Learning (NDL)

CYCLE by M.C. Escher

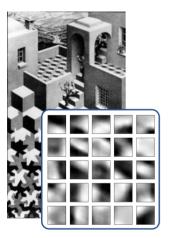
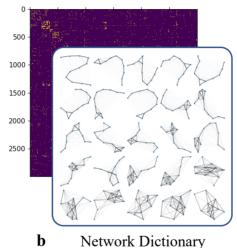
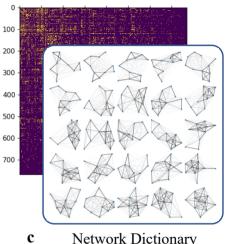


Image Dictionary a

UCLA Facebook Network

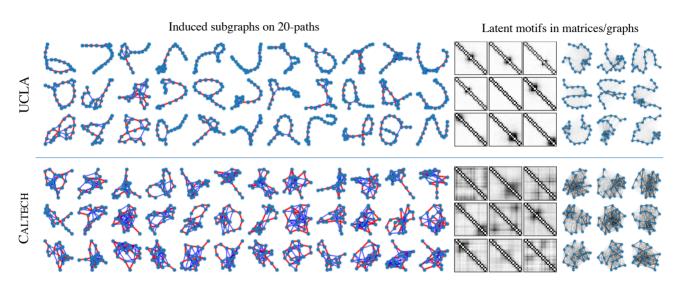


CALTECH Facebook Network



- **Network Dictionary**
- ► NDL: Network data → Latent motifs (nonnegative basis for subgraphs)
 - First introduced in L., Needell, Balzano [4]
 - Further developed in L., Kureh, Vendrow, Porter [6]

Network Dictionary Learning (NDL)



- ► NDL: Network data → Latent motifs (nonnegative basis for subgraphs)
 - First introduced in L., Needell, Balzano [4]
 - Further developed in L., Kureh, Vendrow, Porter [6]

Network Dictionary Learning (NDL)

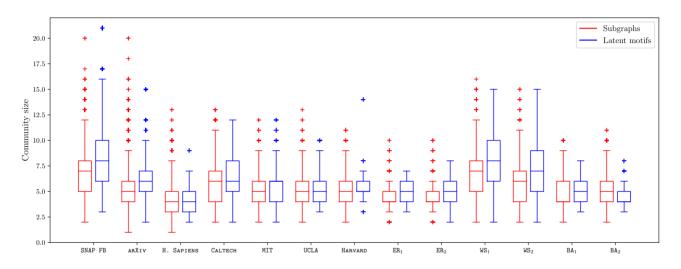


Figure: Comparing community sizes in 10K random subgraphs vs. 25 latent motifs

- ► NDL: Network data → Latent motifs (nonnegative basis for subgraphs)
 - First introduced in L., Needell, Balzano [4]
 - Further developed in L., Kureh, Vendrow, Porter [6]

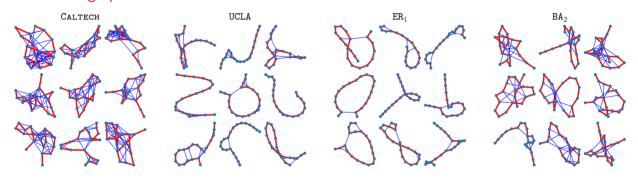


Figure: From L., Kureh, Vendrow, Porter '22+

 Given a large sparse network (e.g., Facebook social network), analyze the structure of random subgraphs

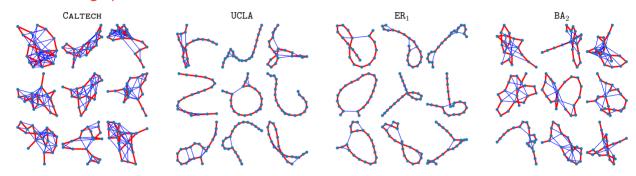


Figure: From L., Kureh, Vendrow, Porter '22+

How do we sample subgraphs?

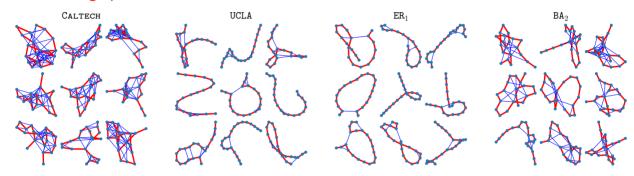


Figure: From L., Kureh, Vendrow, Porter '22+

- How do we sample subgraphs?
 - Sample a uniformly random *k*-path (red edges)

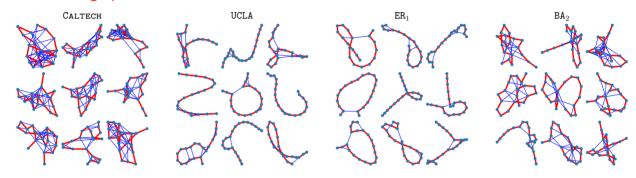


Figure: From L., Kureh, Vendrow, Porter '22+

- How do we sample subgraphs?
 - Sample a uniformly random *k*-path (red edges)
 - Use MCMC motif sampling by L. Memoli, Sivakoff '22

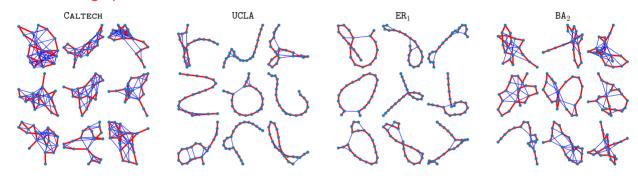
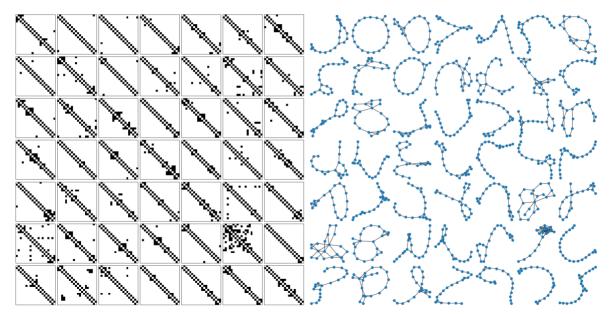


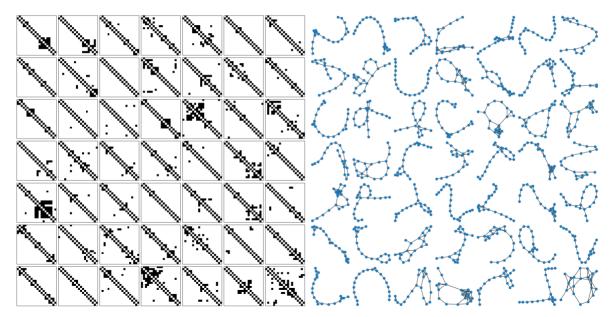
Figure: From L., Kureh, Vendrow, Porter '22+

- How do we sample subgraphs?
 - Sample a uniformly random *k*-path (red edges)
 - Use MCMC motif sampling by L. Memoli, Sivakoff '22
 - Take the induced subgraph (blue edges)

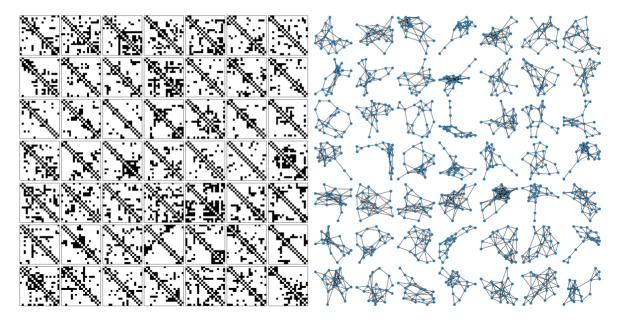
Induced subgraphs on 20-paths in Wisconsin



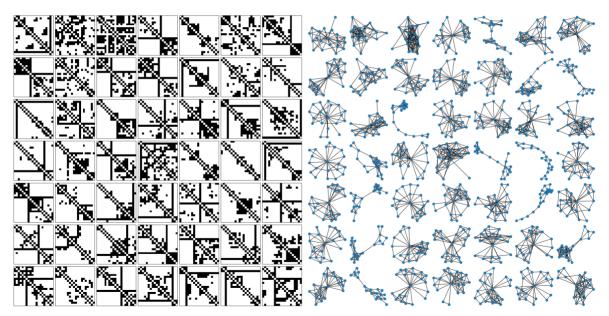
Induced subgraphs on 20-paths in UCLA



Induced subgraphs on 20-paths in Caltech



Induced subgraphs on 20-paths in facebook_combined



• NDL = MCMC subgraph sampling + Online NMF

(a) arXiv

(b) Facebook

(c) Caltech

(d) UCLA

(e) UW-Madison

▶ When $\theta \mapsto \ell(\mathbf{x}, \theta)$ is convex, $\theta_n \to \text{global minimum}$ at rate $O(\log n / \sqrt{n})$ for i.i.d. data samples \mathbf{x}_n (Mairal 2013)

- When $\theta \mapsto \ell(\mathbf{x}, \theta)$ is convex, $\theta_n \to \text{global minimum}$ at rate $O(\log n / \sqrt{n})$ for i.i.d. data samples \mathbf{x}_n (Mairal 2013)
- ▶ When $\theta \mapsto \ell(\mathbf{x}, \theta)$ is non-convex, $\theta_n \to \{\text{stationary pts. of expected loss}\}$ for i.i.d. data samples \mathbf{x}_n (Mairal et al. 2010, Mairal 2013, Mensch et al. 2017)

- ▶ When $\theta \mapsto \ell(\mathbf{x}, \theta)$ is convex, $\theta_n \to \text{global minimum}$ at rate $O(\log n / \sqrt{n})$ for i.i.d. data samples \mathbf{x}_n (Mairal 2013)
- When $\theta \mapsto \ell(\mathbf{x}, \theta)$ is non-convex, $\theta_n \to \{\text{stationary pts. of expected loss}\}\$ for i.i.d. data samples \mathbf{x}_n (Mairal et al. 2010, Mairal 2013, Mensch et al. 2017)
 - Holds for Online NMF loss with Markovian data samples (L., Balzano, Needell '20)

- ▶ When $\theta \mapsto \ell(\mathbf{x}, \theta)$ is convex, $\theta_n \to \text{global minimum}$ at rate $O(\log n / \sqrt{n})$ for i.i.d. data samples \mathbf{x}_n (Mairal 2013)
- ▶ When $\theta \mapsto \ell(\mathbf{x}, \theta)$ is non-convex, $\theta_n \to \{\text{stationary pts. of expected loss}\}$ for i.i.d. data samples \mathbf{x}_n (Mairal et al. 2010, Mairal 2013, Mensch et al. 2017)
 - Holds for Online NMF loss with Markovian data samples (L., Balzano, Needell '20)
 - Holds for Online CP-dictionary learning loss with Markovian data samples (L., Strohmeier, Needell 22)

- ▶ When $\theta \mapsto \ell(\mathbf{x}, \theta)$ is convex, $\theta_n \to \text{global minimum}$ at rate $O(\log n / \sqrt{n})$ for i.i.d. data samples \mathbf{x}_n (Mairal 2013)
- ▶ When $\theta \mapsto \ell(\mathbf{x}, \theta)$ is non-convex, $\theta_n \to \{\text{stationary pts. of expected loss}\}$ for i.i.d. data samples \mathbf{x}_n (Mairal et al. 2010, Mairal 2013, Mensch et al. 2017)
 - Holds for Online NMF loss with Markovian data samples (L., Balzano, Needell '20)
 - Holds for Online CP-dictionary learning loss with Markovian data samples (L., Strohmeier, Needell 22)
- No rate of convergence known for SMM in the nonconvex case (even with i.i.d. input + strongly cvx surrogates)

- ▶ When $\theta \mapsto \ell(\mathbf{x}, \theta)$ is convex, $\theta_n \to \text{global minimum}$ at rate $O(\log n / \sqrt{n})$ for i.i.d. data samples \mathbf{x}_n (Mairal 2013)
- When $\theta \mapsto \ell(\mathbf{x}, \theta)$ is non-convex, $\theta_n \to \{\text{stationary pts. of expected loss}\}\$ for i.i.d. data samples \mathbf{x}_n (Mairal et al. 2010, Mairal 2013, Mensch et al. 2017)
 - Holds for Online NMF loss with Markovian data samples (L., Balzano, Needell '20)
 - Holds for Online CP-dictionary learning loss with Markovian data samples (L., Strohmeier, Needell 22)
- ► No **rate of convergence** known for SMM in the nonconvex case (even with i.i.d. input + strongly cvx surrogates)
 - For unconstrained nonconvex SGD, $O(\log n/\sqrt{n})$ rate to stationary pts. known for Markovian input (Sun et al. '18)

- ▶ When $\theta \mapsto \ell(\mathbf{x}, \theta)$ is convex, $\theta_n \to \text{global minimum}$ at rate $O(\log n / \sqrt{n})$ for i.i.d. data samples \mathbf{x}_n (Mairal 2013)
- When $\theta \mapsto \ell(\mathbf{x}, \theta)$ is non-convex, $\theta_n \to \{\text{stationary pts. of expected loss}\}\$ for i.i.d. data samples \mathbf{x}_n (Mairal et al. 2010, Mairal 2013, Mensch et al. 2017)
 - Holds for Online NMF loss with Markovian data samples (L., Balzano, Needell '20)
 - Holds for Online CP-dictionary learning loss with Markovian data samples (L., Strohmeier, Needell 22)
- ► No **rate of convergence** known for SMM in the nonconvex case (even with i.i.d. input + strongly cvx surrogates)
 - For unconstrained nonconvex SGD, $O(\log n/\sqrt{n})$ rate to stationary pts. known for Markovian input (Sun et al. '18)
 - For constrained nonconvex PSGD, $O(\log n/\sqrt{n})$ rate to stationary pts. known for i.i.d. input (Davis, Drusvyatskiy '20)

- ▶ When $\theta \mapsto \ell(\mathbf{x}, \theta)$ is convex, $\theta_n \to \text{global minimum}$ at rate $O(\log n / \sqrt{n})$ for i.i.d. data samples \mathbf{x}_n (Mairal 2013)
- When $\theta \mapsto \ell(\mathbf{x}, \theta)$ is non-convex, $\theta_n \to \{\text{stationary pts. of expected loss}\}\$ for i.i.d. data samples \mathbf{x}_n (Mairal et al. 2010, Mairal 2013, Mensch et al. 2017)
 - Holds for Online NMF loss with Markovian data samples (L., Balzano, Needell '20)
 - Holds for Online CP-dictionary learning loss with Markovian data samples (L., Strohmeier, Needell 22)
- No rate of convergence known for SMM in the nonconvex case (even with i.i.d. input + strongly cvx surrogates)
 - For unconstrained nonconvex SGD, $O(\log n/\sqrt{n})$ rate to stationary pts. known for Markovian input (Sun et al. '18)
 - For constrained nonconvex PSGD, $O(\log n/\sqrt{n})$ rate to stationary pts. known for i.i.d. input (Davis, Drusvyatskiy '20)
 - Recently extended to the Markovian case (L., Alacaoglu '22+)

$$\min_{1 \le k \le n} \left\| \nabla \bar{g}_k(\boldsymbol{\theta}_k) \right\|^2 = O\left(\frac{(\log n)^{2+2\varepsilon}}{n}\right), \quad \min_{1 \le k \le n} \left\| \nabla \bar{f}_k(\boldsymbol{\theta}_k) \right\|^2 = O\left(\frac{(\log n)^{1+\varepsilon}}{\sqrt{n}}\right),$$

$$\min_{1 \le k \le n} \left\| \nabla f(\boldsymbol{\theta}_k) \right\|^2 = O\left(\frac{(\log n)^{1+\varepsilon}}{\sqrt{n}}\right).$$

 $(\boldsymbol{\theta}_n)_{n\geq 0} = \text{output of SRMM}, \ (\mathbf{x}_n)_{n\geq 1} : \text{ exponentially mixing data samples.}$ If $\boldsymbol{\theta}_n \in \text{interior}(\boldsymbol{\Theta}) \text{ for } n\geq 1 \text{ and } w_n = n^{-1/2}(\log n)^{1+\varepsilon},$

$$\min_{1 \le k \le n} \|\nabla \bar{g}_k(\boldsymbol{\theta}_k)\|^2 = O\left(\frac{(\log n)^{2+2\varepsilon}}{n}\right), \quad \min_{1 \le k \le n} \|\nabla \bar{f}_k(\boldsymbol{\theta}_k)\|^2 = O\left(\frac{(\log n)^{1+\varepsilon}}{\sqrt{n}}\right),$$

$$\min_{1 \le k \le n} \|\nabla f(\boldsymbol{\theta}_k)\|^2 = O\left(\frac{(\log n)^{1+\varepsilon}}{\sqrt{n}}\right).$$

Provides first convergence rate bound for Online NMF, Online CPDL, SMM, and SRMM in the general Markovian data case

Corollary (L. '22+)

$$\min_{1 \le k \le n} \|\nabla \bar{g}_k(\boldsymbol{\theta}_k)\|^2 = O\left(\frac{(\log n)^{2+2\varepsilon}}{n}\right), \quad \min_{1 \le k \le n} \|\nabla \bar{f}_k(\boldsymbol{\theta}_k)\|^2 = O\left(\frac{(\log n)^{1+\varepsilon}}{\sqrt{n}}\right),$$

$$\min_{1 \le k \le n} \|\nabla f(\boldsymbol{\theta}_k)\|^2 = O\left(\frac{(\log n)^{1+\varepsilon}}{\sqrt{n}}\right).$$

- Provides first convergence rate bound for Online NMF, Online CPDL, SMM, and SRMM in the general Markovian data case
- ▶ Matches with optimal SGD/PSGD rate of convergence $O((\log n)/\sqrt{n})$ up to a log factor

Corollary (L. '22+)

$$\min_{1 \le k \le n} \|\nabla \bar{g}_k(\boldsymbol{\theta}_k)\|^2 = O\left(\frac{(\log n)^{2+2\varepsilon}}{n}\right), \quad \min_{1 \le k \le n} \|\nabla \bar{f}_k(\boldsymbol{\theta}_k)\|^2 = O\left(\frac{(\log n)^{1+\varepsilon}}{\sqrt{n}}\right),$$

$$\min_{1 \le k \le n} \|\nabla f(\boldsymbol{\theta}_k)\|^2 = O\left(\frac{(\log n)^{1+\varepsilon}}{\sqrt{n}}\right).$$

- ► Provides first convergence rate bound for Online NMF, Online CPDL, SMM, and SRMM in the general Markovian data case
- ▶ Matches with optimal SGD/PSGD rate of convergence $O((\log n)/\sqrt{n})$ up to a log factor
- ▶ Best known rate of convergence of SGD/PSGD for the empirical loss \bar{f}_n is $O(1/n^{1/4})$.

Corollary (L. '22+)

$$\min_{1 \le k \le n} \left\| \nabla \bar{g}_k(\boldsymbol{\theta}_k) \right\|^2 = O\left(\frac{(\log n)^{2+2\varepsilon}}{n}\right), \quad \min_{1 \le k \le n} \left\| \nabla \bar{f}_k(\boldsymbol{\theta}_k) \right\|^2 = O\left(\frac{(\log n)^{1+\varepsilon}}{\sqrt{n}}\right),$$

$$\min_{1 \le k \le n} \left\| \nabla f(\boldsymbol{\theta}_k) \right\|^2 = O\left(\frac{(\log n)^{1+\varepsilon}}{\sqrt{n}}\right).$$

- ► Provides first convergence rate bound for Online NMF, Online CPDL, SMM, and SRMM in the general Markovian data case
- ▶ Matches with optimal SGD/PSGD rate of convergence $O((\log n)/\sqrt{n})$ up to a log factor
- ▶ Best known rate of convergence of SGD/PSGD for the empirical loss \bar{f}_n is $O(1/n^{1/4})$.
 - SGD/PSGD solves for f and indirectly solves for \bar{f}_n ;

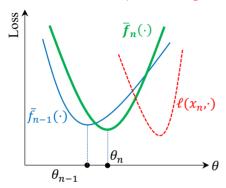
Corollary (L. '22+)

$$\min_{1 \le k \le n} \left\| \nabla \bar{g}_k(\boldsymbol{\theta}_k) \right\|^2 = O\left(\frac{(\log n)^{2+2\varepsilon}}{n}\right), \quad \min_{1 \le k \le n} \left\| \nabla \bar{f}_k(\boldsymbol{\theta}_k) \right\|^2 = O\left(\frac{(\log n)^{1+\varepsilon}}{\sqrt{n}}\right),$$

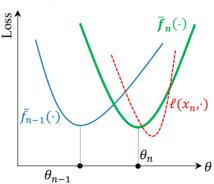
$$\min_{1 \le k \le n} \left\| \nabla f(\boldsymbol{\theta}_k) \right\|^2 = O\left(\frac{(\log n)^{1+\varepsilon}}{\sqrt{n}}\right).$$

- ► Provides first convergence rate bound for Online NMF, Online CPDL, SMM, and SRMM in the general Markovian data case
- ▶ Matches with optimal SGD/PSGD rate of convergence $O((\log n)/\sqrt{n})$ up to a log factor
- ▶ Best known rate of convergence of SGD/PSGD for the empirical loss \bar{f}_n is $O(1/n^{1/4})$.
 - SGD/PSGD solves for f and indirectly solves for \bar{f}_n ;
 - SRMM solves for $ar{f}_n$ and indirectly solves for f

▶ What happens in the fast adaptation regime $w_n = \Omega(1/\sqrt{n})$?

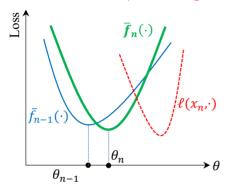


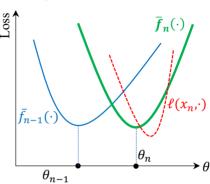
Slow adaptation



Fast adaptation

• What happens in the fast adaptation regime $w_n = \Omega(1/\sqrt{n})$?



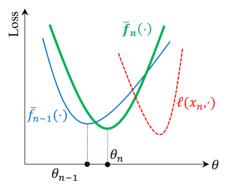


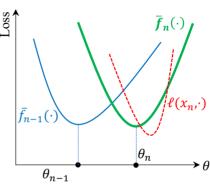
Slow adaptation

Fast adaptation

• All theoretical analysis assumes slow adaptation regime $\frac{1}{n} \le w_n \ll \frac{1}{\sqrt{n}}$:

▶ What happens in the fast adaptation regime $w_n = \Omega(1/\sqrt{n})$?

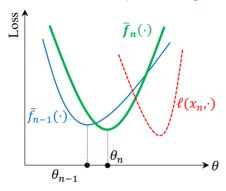


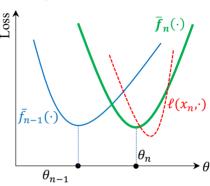


Fast adaptation

- All theoretical analysis assumes slow adaptation regime $\frac{1}{n} \le w_n \ll \frac{1}{\sqrt{n}}$:
- It allows to use weighted versions of SLLN and CLT: $\bar{f}_n \approx f$, $\nabla \bar{f}_n \approx \nabla f$

▶ What happens in the fast adaptation regime $w_n = \Omega(1/\sqrt{n})$?

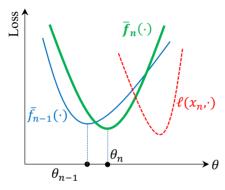


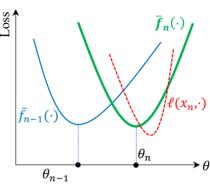


Fast adaptation

- All theoretical analysis assumes slow adaptation regime $\frac{1}{n} \le w_n \ll \frac{1}{\sqrt{n}}$:
- It allows to use weighted versions of SLLN and CLT: $\bar{f}_n \approx f$, $\nabla \bar{f}_n \approx \nabla f$
- Formulate the goal of learning non-stationary (short-time scale) features

▶ What happens in the fast adaptation regime $w_n = \Omega(1/\sqrt{n})$?

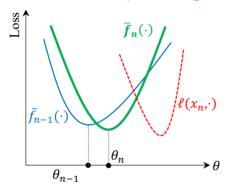


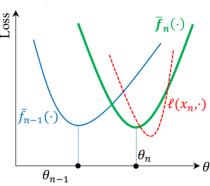


Fast adaptation

- All theoretical analysis assumes slow adaptation regime $\frac{1}{n} \le w_n \ll \frac{1}{\sqrt{n}}$:
- It allows to use weighted versions of SLLN and CLT: $\bar{f}_n \approx f$, $\nabla \bar{f}_n \approx \nabla f$
- Formulate the goal of learning non-stationary (short-time scale) features
- ► Finding global minimizer for some online nonconvex problems?

▶ What happens in the fast adaptation regime $w_n = \Omega(1/\sqrt{n})$?





Fast adaptation

- All theoretical analysis assumes slow adaptation regime $\frac{1}{n} \le w_n \ll \frac{1}{\sqrt{n}}$:
- It allows to use weighted versions of SLLN and CLT: $\bar{f}_n \approx f$, $\nabla \bar{f}_n \approx \nabla f$
- Formulate the goal of learning non-stationary (short-time scale) features
- Finding global minimizer for some online nonconvex problems?
 - Many recent developments on global landscape analysis on low-rank problems / Tucker decomposition

Thanks!

Outline

Introduction

2 BCD with Diminishing Radius and Proximal Regularization

- Stochastic/Online optimization algorithms
- Proof ideas

Proposition (Finite first-order variation)

For BCD-DR with $\sum_{n=1}^{\infty} r_n^2 < \infty$,

$$\sum_{n=1}^{\infty} \left| \left\langle \nabla f(\boldsymbol{\theta}_{n+1}), \boldsymbol{\theta}_n - \boldsymbol{\theta}_{n+1} \right\rangle \right| \leq \frac{L}{2} \left(\sum_{n=1}^{\infty} \|\boldsymbol{\theta}_n - \boldsymbol{\theta}_{n+1}\|^2 \right) + f(\boldsymbol{\theta}_1) < \infty.$$

Proposition (Finite first-order variation)

For BCD-DR with $\sum_{n=1}^{\infty} r_n^2 < \infty$,

$$\sum_{n=1}^{\infty} \left| \left\langle \nabla f(\boldsymbol{\theta}_{n+1}), \boldsymbol{\theta}_n - \boldsymbol{\theta}_{n+1} \right\rangle \right| \leq \frac{L}{2} \left(\sum_{n=1}^{\infty} \|\boldsymbol{\theta}_n - \boldsymbol{\theta}_{n+1}\|^2 \right) + f(\boldsymbol{\theta}_1) < \infty.$$

Proposition (Asymptotic first-order optimality)

Fix a sequence $(b_n)_{n\geq 1}$ such that $0 < b_n \leq r_n$ for all $n\geq 1$. Then

$$-b_{n+1}\inf_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}\left\langle \nabla f(\boldsymbol{\theta}_n), \frac{\boldsymbol{\theta}-\boldsymbol{\theta}_n}{\|\boldsymbol{\theta}-\boldsymbol{\theta}_n\|} \right\rangle \leq \left|\left\langle \nabla f(\boldsymbol{\theta}_{n+1}), \boldsymbol{\theta}_{n+1}-\boldsymbol{\theta}_n\right\rangle\right| + c_1\left(b_{n+1}^2 + \|\boldsymbol{\theta}_{n+1}-\boldsymbol{\theta}_n\|^2\right)$$

Proposition (Finite first-order variation)

For BCD-DR with $\sum_{n=1}^{\infty} r_n^2 < \infty$,

$$\sum_{n=1}^{\infty} \left| \left\langle \nabla f(\boldsymbol{\theta}_{n+1}), \boldsymbol{\theta}_n - \boldsymbol{\theta}_{n+1} \right\rangle \right| \leq \frac{L}{2} \left(\sum_{n=1}^{\infty} \| \boldsymbol{\theta}_n - \boldsymbol{\theta}_{n+1} \|^2 \right) + f(\boldsymbol{\theta}_1) < \infty.$$

Proposition (Asymptotic first-order optimality)

Fix a sequence $(b_n)_{n\geq 1}$ such that $0 < b_n \leq r_n$ for all $n\geq 1$. Then

$$-b_{n+1}\inf_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}\left\langle \nabla f(\boldsymbol{\theta}_n), \frac{\boldsymbol{\theta}-\boldsymbol{\theta}_n}{\|\boldsymbol{\theta}-\boldsymbol{\theta}_n\|} \right\rangle \leq \left|\left\langle \nabla f(\boldsymbol{\theta}_{n+1}), \boldsymbol{\theta}_{n+1}-\boldsymbol{\theta}_n\right\rangle\right| + c_1\left(b_{n+1}^2 + \|\boldsymbol{\theta}_{n+1}-\boldsymbol{\theta}_n\|^2\right)$$

By adding up the previous inequality:

$$\sum_{n=1}^{\infty} r_n \left[-\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\langle \nabla f(\boldsymbol{\theta}_n), \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_n}{\|\boldsymbol{\theta} - \boldsymbol{\theta}_n\|} \right\rangle \right] < M < \infty.$$

$$\sum_{n=1}^{\infty} r_n \left[-\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\langle \nabla f(\boldsymbol{\theta}_n), \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_n}{\|\boldsymbol{\theta} - \boldsymbol{\theta}_n\|} \right\rangle \right] < M < \infty.$$

$$\sum_{n=1}^{\infty} r_n \left[-\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\langle \nabla f(\boldsymbol{\theta}_n), \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_n}{\|\boldsymbol{\theta} - \boldsymbol{\theta}_n\|} \right\rangle \right] < M < \infty.$$

► This easily gives

$$\min_{1 \le k \le n} \left[-\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\langle \nabla f(\boldsymbol{\theta}_k), \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_k}{\|\boldsymbol{\theta} - \boldsymbol{\theta}_k\|} \right\rangle \right] \le \frac{M}{\sum_{k=1}^n r_k}.$$

$$\sum_{n=1}^{\infty} r_n \left[-\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\langle \nabla f(\boldsymbol{\theta}_n), \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_n}{\|\boldsymbol{\theta} - \boldsymbol{\theta}_n\|} \right\rangle \right] < M < \infty.$$

This easily gives

$$\min_{1 \le k \le n} \left[-\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\langle \nabla f(\boldsymbol{\theta}_k), \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_k}{\|\boldsymbol{\theta} - \boldsymbol{\theta}_k\|} \right\rangle \right] \le \frac{M}{\sum_{k=1}^n r_k}.$$

▶ Do a bookeeping for M and show it does not depend on the initialization θ_0 :

$$\min_{1 \leq k \leq n} \sup_{\boldsymbol{\theta}_0 \in \boldsymbol{\Theta}} \left[-\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\langle \nabla f(\boldsymbol{\theta}_k), \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_k}{\|\boldsymbol{\theta} - \boldsymbol{\theta}_k\|} \right\rangle \right] \leq \frac{M}{\sum_{k=1}^n r_k}.$$

$$\sum_{n=1}^{\infty} r_n \left[-\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\langle \nabla f(\boldsymbol{\theta}_n), \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_n}{\|\boldsymbol{\theta} - \boldsymbol{\theta}_n\|} \right\rangle \right] < M < \infty.$$

This easily gives

$$\min_{1 \le k \le n} \left[-\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\langle \nabla f(\boldsymbol{\theta}_k), \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_k}{\|\boldsymbol{\theta} - \boldsymbol{\theta}_k\|} \right\rangle \right] \le \frac{M}{\sum_{k=1}^n r_k}.$$

ightharpoonup Do a bookeeping for M and show it does not depend on the initialization θ_0 :

$$\min_{1 \leq k \leq n} \sup_{\boldsymbol{\theta}_0 \in \boldsymbol{\Theta}} \left[-\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\langle \nabla f(\boldsymbol{\theta}_k), \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_k}{\|\boldsymbol{\theta} - \boldsymbol{\theta}_k\|} \right\rangle \right] \leq \frac{M}{\sum_{k=1}^n r_k}.$$

▶ Is that it? Not quite, this only gives a subsequencial convergence and its rate. (Though it does imply iteration complexity bound.)

$$\sum_{n=1}^{\infty} r_n \left[-\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\langle \nabla f(\boldsymbol{\theta}_n), \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_n}{\|\boldsymbol{\theta} - \boldsymbol{\theta}_n\|} \right\rangle \right] < M < \infty.$$

► This easily gives

$$\min_{1 \le k \le n} \left[-\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\langle \nabla f(\boldsymbol{\theta}_k), \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_k}{\|\boldsymbol{\theta} - \boldsymbol{\theta}_k\|} \right\rangle \right] \le \frac{M}{\sum_{k=1}^n r_k}.$$

Do a bookeeping for M and show it does not depend on the initialization $\boldsymbol{\theta}_0$:

$$\min_{1 \leq k \leq n} \sup_{\boldsymbol{\theta}_0 \in \boldsymbol{\Theta}} \left[-\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\langle \nabla f(\boldsymbol{\theta}_k), \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_k}{\|\boldsymbol{\theta} - \boldsymbol{\theta}_k\|} \right\rangle \right] \leq \frac{M}{\sum_{k=1}^n r_k}.$$

- ▶ Is that it? Not quite, this only gives a subsequencial convergence and its rate. (Though it does imply iteration complexity bound.)
 - How do we know if every convergent subsequence of $(\boldsymbol{\theta}_n)_{n\geq 1}$ converges to a stationary point?

▶ Suppose W.L.O.G. $(\theta_n)_{n\geq 1}$ (from BCD-DR) converges to a limit point $\theta_\infty \in \Theta$.

- ▶ Suppose W.L.O.G. $(\theta_n)_{n\geq 1}$ (from BCD-DR) converges to a limit point $\theta_\infty \in \Theta$.
- ▶ WTS: θ_{∞} is stationary for f over Θ :

$$\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \langle \nabla f(\boldsymbol{\theta}_{\infty}), \boldsymbol{\theta} - \boldsymbol{\theta}_{\infty} \rangle \geq 0$$

- ▶ Suppose W.L.O.G. $(\theta_n)_{n\geq 1}$ (from BCD-DR) converges to a limit point $\theta_\infty \in \Theta$.
- ▶ WTS: θ_{∞} is stationary for f over Θ :

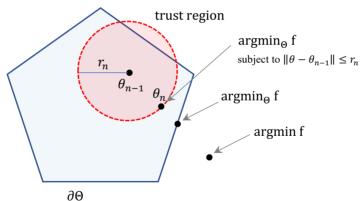
$$\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \langle \nabla f(\boldsymbol{\theta}_{\infty}), \boldsymbol{\theta} - \boldsymbol{\theta}_{\infty} \rangle \geq 0$$

Main difficulty: Show that the DR (also the PR) modification of BCD does not affect the asymptotic property of iterates

- ▶ Suppose W.L.O.G. $(\theta_n)_{n\geq 1}$ (from BCD-DR) converges to a limit point $\theta_\infty \in \Theta$.
- ▶ WTS: θ_{∞} is stationary for f over Θ :

$$\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \langle \nabla f(\boldsymbol{\theta}_{\infty}), \boldsymbol{\theta} - \boldsymbol{\theta}_{\infty} \rangle \geq 0$$

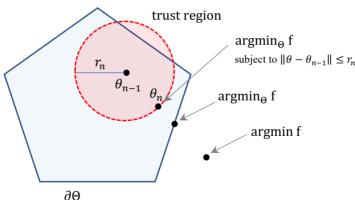
- Main difficulty: Show that the DR (also the PR) modification of BCD does not affect the asymptotic property of iterates
 - For BCD-DR: What if θ_n touches the trust region boundary $\|\theta \theta_n\| \le r_n$ infintely often?



- ▶ Suppose W.L.O.G. $(\theta_n)_{n\geq 1}$ (from BCD-DR) converges to a limit point $\theta_\infty \in \Theta$.
- ▶ WTS: θ_{∞} is stationary for f over Θ :

$$\inf_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \langle \nabla f(\boldsymbol{\theta}_{\infty}), \boldsymbol{\theta} - \boldsymbol{\theta}_{\infty} \rangle \geq 0$$

- Main difficulty: Show that the DR (also the PR) modification of BCD does not affect the asymptotic property of iterates
 - For BCD-DR: What if θ_n touches the trust region boundary $\|\theta \theta_n\| \le r_n$ infintely often?

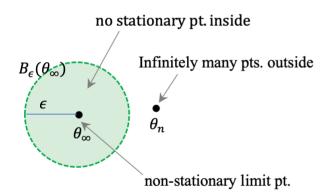


• For BCD-PR: What if the PR term tilts the true gradient asymptotically?

Proposition (Local structure of a non-stationary limit point)

Assume $\sum_{n=1}^{\infty} r_n = \infty$, and $\sum_{n=1}^{\infty} r_n^2 < \infty$. Suppose there exists a non-stationary limit point $\boldsymbol{\theta}_{\infty}$ of $(\boldsymbol{\theta}_n)_{n\geq 1}$. Then there exists $\varepsilon > 0$ such that the ε -neighborhood $B_{\varepsilon}(\boldsymbol{\theta}_{\infty}) := \{\boldsymbol{\theta} \in \boldsymbol{\Theta} \mid \|\boldsymbol{\theta} - \boldsymbol{\theta}_{\infty}\| < \varepsilon\}$ s.t.

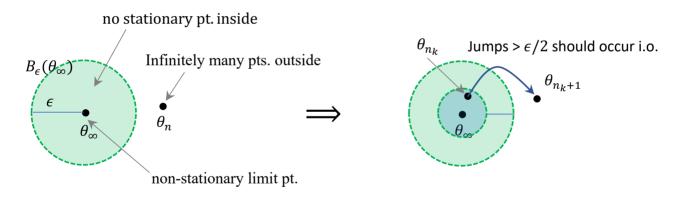
- (a) $B_{\varepsilon}(\boldsymbol{\theta}_{\infty})$ does not contain any stationary points of f over $\boldsymbol{\Theta}$
- **(b)** There exists infinitely many $\boldsymbol{\theta}_n$'s outside of $B_{\varepsilon}(\boldsymbol{\theta}_{\infty})$.



Proposition (Local structure of a non-stationary limit point)

Assume $\sum_{n=1}^{\infty} r_n = \infty$, and $\sum_{n=1}^{\infty} r_n^2 < \infty$. Suppose there exists a non-stationary limit point θ_{∞} of $(\theta_n)_{n\geq 1}$. Then there exists $\varepsilon > 0$ such that the ε -neighborhood $B_{\varepsilon}(\theta_{\infty}) := \{\theta \in \Theta \mid \|\theta - \theta_{\infty}\| < \varepsilon\}$ s.t.

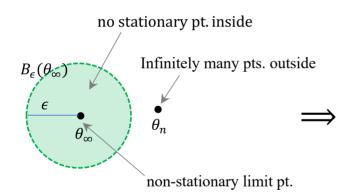
- (a) $B_{\varepsilon}(\theta_{\infty})$ does not contain any stationary points of f over Θ
- **(b)** There exists infinitely many θ_n 's outside of $B_{\varepsilon}(\theta_{\infty})$.



Proposition (Local structure of a non-stationary limit point)

Assume $\sum_{n=1}^{\infty} r_n = \infty$, and $\sum_{n=1}^{\infty} r_n^2 < \infty$. Suppose there exists a non-stationary limit point $\boldsymbol{\theta}_{\infty}$ of $(\boldsymbol{\theta}_n)_{n\geq 1}$. Then there exists $\varepsilon > 0$ such that the ε -neighborhood $B_{\varepsilon}(\boldsymbol{\theta}_{\infty}) := \{\boldsymbol{\theta} \in \boldsymbol{\Theta} \mid \|\boldsymbol{\theta} - \boldsymbol{\theta}_{\infty}\| < \varepsilon\}$ s.t.

- (a) $B_{\varepsilon}(\theta_{\infty})$ does not contain any stationary points of f over Θ
- **(b)** There exists infinitely many θ_n 's outside of $B_{\varepsilon}(\theta_{\infty})$.

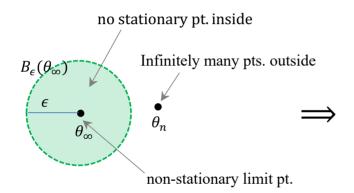


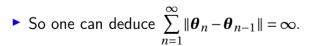
 θ_{n_k} Jumps > $\epsilon/2$ should occur i.o. θ_{n_k+1}

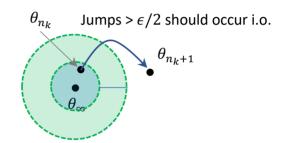
So one can deduce $\sum_{n=1}^{\infty} \|\boldsymbol{\theta}_n - \boldsymbol{\theta}_{n-1}\| = \infty$.

Proposition (Sufficient condition for stationarity II)

Suppose there exists a subsequence $(\boldsymbol{\theta}_{n_k})_{k\geq 1}$ such that $\sum_{k=1}^{\infty}\|\boldsymbol{\theta}_{n_k}-\boldsymbol{\theta}_{n_k+1}\|=\infty$. There exists a further subsequence $(s_k)_{k\geq 1}$ of $(n_k)_{k\geq 1}$ such that $\boldsymbol{\theta}_{\infty}:=\lim_{k\to\infty}\boldsymbol{\theta}_{s_k}$ exists and is stationary.

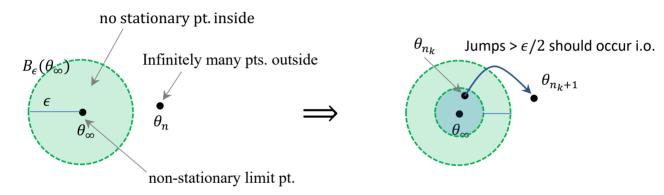






Proposition (Sufficient condition for stationarity II)

Suppose there exists a subsequence $(\boldsymbol{\theta}_{n_k})_{k\geq 1}$ such that $\sum_{k=1}^{\infty}\|\boldsymbol{\theta}_{n_k}-\boldsymbol{\theta}_{n_k+1}\|=\infty$. There exists a further subsequence $(s_k)_{k\geq 1}$ of $(n_k)_{k\geq 1}$ such that $\boldsymbol{\theta}_{\infty}:=\lim_{k\to\infty}\boldsymbol{\theta}_{s_k}$ exists and is stationary.



- So one can deduce $\sum_{n=1}^{\infty} \|\boldsymbol{\theta}_n \boldsymbol{\theta}_{n-1}\| = \infty.$
- ► This implies $(\theta_n)_{n\geq 1}$ has a subsequence that converges to a stationary point, which should be inside $B_{\varepsilon}(\theta_{\infty})_{\varepsilon}$ ⇒ \Leftarrow .

- [1] Luigi Grippo and Marco Sciandrone. "On the convergence of the block nonlinear Gauss–Seidel method under convex constraints". In: *Operations research letters* 26.3 (2000), pp. 127–136.
- [2] Hanbaek Lyu. "Convergence and complexity of block coordinate descent with diminishing radius for nonconvex optimization". In: arXiv preprint arXiv:2012.03503 (2020).
- [3] Hanbaek Lyu. "Convergence and Complexity of Stochastic Block Majorization-Minimization". In: arXiv preprint arXiv:2201.01652 (2022).
- [4] Hanbaek Lyu, Deanna Needell, and Laura Balzano. "Online matrix factorization for Markovian data and applications to network dictionary learning". In: *Journal of Machine Learning Research* 21 21 (2021), pp. 1–49.
- [5] Hanbaek Lyu, Christopher Strohmeier, and Deanna Needell. "Online nonnegative CP-dictionary learning for Markovian data". In: *To appear in JMLR. arXiv:2009.07612* (2020).
- [6] Hanbaek Lyu et al. "Learning low-rank latent mesoscale structures in networks". In: arXiv preprint arXiv:2102.06984 (2021).
- [7] Yu Nesterov. "Efficiency of coordinate descent methods on huge-scale optimization problems". In: SIAM Journal on Optimization 22.2 (2012), pp. 341–362.

- [8] Michael JD Powell. "On search directions for minimization algorithms". In: *Mathematical programming* 4.1 (1973), pp. 193–201.
- [9] Stephen J Wright. "Coordinate descent algorithms". In: *Mathematical Programming* 151.1 (2015), pp. 3–34.
- [10] Yangyang Xu and Wotao Yin. "A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion". In: *SIAM Journal on imaging sciences* 6.3 (2013), pp. 1758–1789.