Large random matrices with given margins

Hanbaek Lyu

University of Wisconsin - Madison

Based on joint work with Sumit Mukherjee (Columbia)

Apr. 3, 2025

Outline

Introduction

Random graphs with given degree sequences

A parametric approach for RMs with given margin

Contingency tables and Typical tables

A non-parametric approach to RMs with given margir

Some results on RMs with exactly given margins

Phase diagram of tame margins

Open problems

Sinkhorn algorithm

Static Shrödinger bridge

• (Base model) $\mu = \text{probability measure on } \mathbb{R}$, and let

$$A := \inf\{ \sup(\mu) \} \le \sup\{ \sup(\mu) \} =: B.$$

 $X \sim \mu^{\otimes (m \times n)}$: $(m \times n)$ random matrix with i.i.d. entries drawn from μ

• (Base model) $\mu = \text{probability measure on } \mathbb{R}$, and let

$$A := \inf\{\operatorname{supp}(\mu)\} \le \sup\{\operatorname{supp}(\mu)\} =: B.$$

 $X \sim \mu^{\otimes (m \times n)}$: $(m \times n)$ random matrix with i.i.d. entries drawn from μ

▶ (Margins) For a matrix $\mathbf{x} = (x_{ij}) \in \mathbb{R}^{m \times n}$, $(r(\mathbf{x}), c(\mathbf{x})) = \text{margin of } \mathbf{x}$:

$$r(\mathbf{x}) := (r_1(\mathbf{x}), \dots, r_m(\mathbf{x})); \quad r_i(\mathbf{x}) := x_{i1} + \dots + x_{in} \qquad (\triangleright \text{ row margin of } \mathbf{x})$$
$$c(\mathbf{x}) := (c_1(\mathbf{x}), \dots, c_n(\mathbf{x})); \quad c_j(\mathbf{x}) := x_{1j} + \dots + x_{mj} \qquad (\triangleright \text{ column margin of } \mathbf{x})$$

$$\mathcal{T}_{
ho}(\mathbf{r},\mathbf{c}) := \left\{\mathbf{x} \in \mathbb{R}^{m imes n} \,:\, \|(\mathbf{r},\mathbf{c}) - (\mathit{r}(\mathbf{x}),\mathit{c}(\mathbf{x}))\|_1 \leq
ho
ight\}$$

• (Base model) $\mu = \text{probability measure on } \mathbb{R}$, and let

$$A := \inf\{\operatorname{supp}(\mu)\} \le \sup\{\operatorname{supp}(\mu)\} =: B.$$

 $extbf{X} \sim \mu^{\otimes (m \times n)}$: $(m \times n)$ random matrix with i.i.d. entries drawn from μ

▶ (Margins) For a matrix $\mathbf{x} = (x_{ij}) \in \mathbb{R}^{m \times n}$, $(r(\mathbf{x}), c(\mathbf{x})) = \text{margin of } \mathbf{x}$:

$$r(\mathbf{x}) := (r_1(\mathbf{x}), \dots, r_m(\mathbf{x})); \quad r_i(\mathbf{x}) := x_{i1} + \dots + x_{in} \quad (\triangleright \text{ row margin of } \mathbf{x})$$

$$c(\mathbf{x}) := (c_1(\mathbf{x}), \dots, c_n(\mathbf{x})); \quad c_j(\mathbf{x}) := x_{1j} + \dots + x_{mj} \quad (\triangleright \text{ column margin of } \mathbf{x})$$

$$\mathcal{T}_{\rho}(\mathbf{r},\mathbf{c}) := \left\{ \mathbf{x} \in \mathbb{R}^{m \times n} \, : \, \|(\mathbf{r},\mathbf{c}) - (r(\mathbf{x}),c(\mathbf{x}))\|_1 \leq \rho \right\}$$

► (Main question)

(Main question)

- $X_{11} \stackrel{d}{=} ?$
- $\mathbb{E}[X] = ?$
- $X \mathbb{E}[X] \stackrel{d}{=} ?$
- $X \stackrel{d}{=} ?$

(Main question)

- $X_{11} \stackrel{d}{=} ?$
- $\mathbb{E}[X] = ?$
- $X \mathbb{E}[X] \stackrel{d}{=} ?$
- $X \stackrel{d}{=} ?$
- ► High-level answer:

(Main question)

- $X_{11} \stackrel{d}{=} ?$
- $\mathbb{E}[X] = ?$
- $X \mathbb{E}[X] \stackrel{d}{=} ?$
- $X \stackrel{d}{=} ?$
- ► High-level answer:
 - Maximum Liklihood Perspective (Parameteric): The maximum likelihood entrywise exponential tilting of the base model for margin (r, c)

(Main question)

If we condition $X \sim \mu^{\otimes (m \times n)}$ on being in $\mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})$, how does it look like?

- $X_{11} \stackrel{d}{=} ?$
- $\mathbb{E}[X] = ?$
- $X \mathbb{E}[X] \stackrel{d}{=} ?$
- X ^d ?

► High-level answer:

- Maximum Liklihood Perspective (Parameteric): The maximum likelihood entrywise exponential tilting of the base model for margin (r, c)
- Minimum Relative Entropy Perspective (Non-parametric): The random matrix ensemble with minimum relative entropy from the base model constrained to have the expected margin (r, c).

(Main question)

- $X_{11} \stackrel{d}{=} ?$
- $\mathbb{E}[X] = ?$
- $X \mathbb{E}[X] \stackrel{d}{=} ?$
- $X \stackrel{d}{=} ?$
- ► High-level answer:
 - Maximum Liklihood Perspective (Parameteric): The maximum likelihood entrywise exponential tilting of the base model for margin (r, c)
 - Minimum Relative Entropy Perspective (Non-parametric): The random matrix ensemble with minimum relative entropy from the base model constrained to have the expected margin (r, c).
- ► These two approaches give the same answer! (strong duality)

Outline

Introduction

Random graphs with given degree sequences

A parametric approach for RMs with given margir

Contingency tables and Typical tables

A non-parametric approach to RMs with given margin

Some results on RMs with exactly given margins

Phase diagram of tame margins

Open problems

Sinkhorn algorithm

Static Shrödinger bridg

Random graphs with given degree sequences

▶ $\mathbf{d} = (d_1, d_2, \dots, d_n)$: degree sequence of an *n*-node graph

- **d** = (d_1, d_2, \dots, d_n) : **degree sequence** of an *n*-node graph
- ▶ (Question)

How does a uniformly random graph with degree sequence d look like?

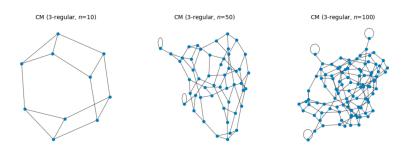


Figure: Random 3-regular graphs generated by the configuration model (allowing loops)

• $(\mathbf{d}^n)_{n\geq 1}$: dense degree sequence with scaling limit to $\mathbf{c}:[0,1]\to(c_1,c_2)\subseteq(0,1)$

- $(\mathbf{d}^n)_{n\geq 1}$: dense degree sequence with scaling limit to $\mathbf{c}:[0,1]\to(c_1,c_2)\subseteq(0,1)$
- ► Chaterjee, Diaconis, Sly '11 [5]

- $(\mathbf{d}^n)_{n\geq 1}$: dense degree sequence with scaling limit to $\mathbf{c}:[0,1]\to(c_1,c_2)\subseteq(0,1)$
- Chaterjee, Diaconis, Sly '11 [5]
 - Assume c satisfies the 'continuum Erdős-Gallai condition'

$$\int_0^x \mathbf{c}(y) \, dy < x^2 + \int_x^1 \mathbf{c}(y) \wedge x \, dy$$

- $(\mathbf{d}^n)_{n\geq 1}$: dense degree sequence with scaling limit to $\mathbf{c}:[0,1]\to (c_1,c_2)\subseteq (0,1)$
- Chaterjee, Diaconis, Sly '11 [5]
 - Assume c satisfies the 'continuum Erdős-Gallai condition'

$$\int_0^x \mathbf{c}(y) \, dy < x^2 + \int_x^1 \mathbf{c}(y) \wedge x \, dy$$

• There exists a limiting 'continuum dual variable ' $m{eta}^*:[0,1] o\mathbb{R}$ such that the corresponding graphon

$$W^{\beta^*}(x,y) = \frac{1}{\exp(\beta^*(x) + \beta^*(y)) + 1}$$

has 'degree sequence' c:

$$\int_{\mathbb{D}} W^{\beta^*}(x,y) \, dy = \mathbf{c}(x)$$

- ▶ $(\mathbf{d}^n)_{n\geq 1}$: dense degree sequence with scaling limit to $\mathbf{c}:[0,1]\to(c_1,c_2)\subseteq(0,1)$
- Chaterjee, Diaconis, Sly '11 [5]
 - Assume c satisfies the 'continuum Erdős-Gallai condition'

$$\int_0^x \mathbf{c}(y) \, dy < x^2 + \int_x^1 \mathbf{c}(y) \wedge x \, dy$$

• There exists a limiting 'continuum dual variable ' $m{eta}^*:[0,1] o\mathbb{R}$ such that the corresponding graphon

$$W^{\beta^*}(x,y) = \frac{1}{\exp(\beta^*(x) + \beta^*(y)) + 1}$$

has 'degree sequence' c:

$$\int_{\mathbb{R}} W^{\beta^*}(x,y) \, dy = \mathbf{c}(x)$$

• $A^n = \text{Adj mx}$ of the uniformly random graph with degree seq. \mathbf{d}^n . Then

$$W_{A^n} \to W^{\beta^*}$$
 in weak cut distance a.s.,

 $(W_{A^n}$: step function corresponding to the adj mx A^n)

► Fit a parametrized random graph model with independent edges (s.t. deg seq = sufficient statistic) to the target degree sequence by MLE

- ► Fit a parametrized random graph model with independent edges (s.t. deg seq = sufficient statistic) to the target degree sequence by MLE
 - (The β -model) Given a dual variable $\beta \in \mathbb{R}^n$, G_β = random graph with n nodes and independent edges, where

$$\mathbb{P}_{\beta}(i \sim j) = \frac{e^{\beta(i) + \beta(j)}}{1 + e^{\beta(i) + \beta(j)}} = \mathbb{E}[A^{\beta}(i, j)]$$

- Fit a parametrized random graph model with independent edges (s.t. deg seq = sufficient statistic) to the target degree sequence by MLE
 - (The β -model) Given a dual variable $\beta \in \mathbb{R}^n$, G_β = random graph with n nodes and independent edges, where

$$\mathbb{P}_{\beta}(i \sim j) = \frac{e^{\beta(i) + \beta(j)}}{1 + e^{\beta(i) + \beta(j)}} = \mathbb{E}[A^{\beta}(i, j)]$$

• (log-likelihood)

$$\ell(\boldsymbol{\beta}) = \sum_{i,j} x_{ij}(\boldsymbol{\beta}(i) + \boldsymbol{\beta}(j)) - \underbrace{\log\left(1 + e^{\boldsymbol{\beta}(i) + \boldsymbol{\beta}(j)}\right)}_{=\psi(\boldsymbol{\beta}(i) + \boldsymbol{\beta}(j))} = 2\langle \mathbf{d}, \boldsymbol{\beta} \rangle - \sum_{i,j} \psi(\boldsymbol{\beta}(i) + \boldsymbol{\beta}(j))$$

- Fit a parametrized random graph model with independent edges (s.t. deg seq = sufficient statistic) to the target degree sequence by MLE
 - (The β -model) Given a dual variable $\beta \in \mathbb{R}^n$, G_β = random graph with n nodes and independent edges, where

$$\mathbb{P}_{\beta}(i \sim j) = \frac{e^{\beta(i) + \beta(j)}}{1 + e^{\beta(i) + \beta(j)}} = \mathbb{E}[A^{\beta}(i, j)]$$

• (log-likelihood)

$$\ell(\boldsymbol{\beta}) = \sum_{i,j} x_{ij} (\boldsymbol{\beta}(i) + \boldsymbol{\beta}(j)) - \underbrace{\log\left(1 + e^{\boldsymbol{\beta}(i) + \boldsymbol{\beta}(j)}\right)}_{=\psi(\boldsymbol{\beta}(i) + \boldsymbol{\beta}(j))} = 2\langle \mathbf{d}, \boldsymbol{\beta} \rangle - \sum_{i,j} \psi(\boldsymbol{\beta}(i) + \boldsymbol{\beta}(j))$$

• (The MLE equation) $\frac{d\ell(\beta)}{d\beta} = 0 \iff \mathbb{E}[\text{degree seq.}] = \mathbf{d}$: $\mathbb{E}\left[\sum_{i=1}^n A^{\beta}(i,j)\right] = d_i \quad \text{for all } 1 \le i \le n$

- Sketch of proof:
 - Find MLE $oldsymbol{eta}^n$ for the $oldsymbol{eta}$ -model to the target degree sequence \mathbf{d}^n

- Sketch of proof:
 - Find MLE β^n for the β -model to the target degree sequence \mathbf{d}^n
 - Transference:

$$G^{\mathcal{G}^n} \stackrel{d}{pprox} G(\mathbf{d}^n) \sim \mathsf{Uniform}(G \ \mathsf{with} \ \mathsf{deg} \ \mathsf{seq} \ = \mathbf{d}^n)$$

- Sketch of proof:
 - Find MLE $oldsymbol{eta}^n$ for the $oldsymbol{eta}$ -model to the target degree sequence \mathbf{d}^n
 - Transference:

$$G^{\mathcal{B}^n} \stackrel{d}{pprox} G(\mathbf{d}^n) \sim \mathsf{Uniform}(G \; \mathsf{with} \; \mathsf{deg} \; \mathsf{seq} \; = \mathbf{d}^n)$$

1.
$$G^{\beta^n} | \{ \deg \operatorname{seq} = \mathbf{d}^n \} \stackrel{d}{=} G(\mathbf{d}^n)$$

- Sketch of proof:
 - Find MLE β^n for the β -model to the target degree sequence \mathbf{d}^n
 - Transference:

$$G^{eta^n} \stackrel{d}{pprox} G(\mathbf{d}^n) \sim \mathsf{Uniform}(G \ \mathsf{with} \ \mathsf{deg} \ \mathsf{seq} \ = \mathbf{d}^n)$$

- 1. $G^{\beta^n} | \{ \deg \operatorname{seq} = \mathbf{d}^n \} \stackrel{d}{=} G(\mathbf{d}^n)$
- **2.** $\mathbb{P}(G^{\beta^n} \text{ has deg seq } \mathbf{d}^n) \ge \exp(-o(n^{3/2+\varepsilon}))$

- Sketch of proof:
 - Find MLE β^n for the β -model to the target degree sequence \mathbf{d}^n
 - Transference:

$$G^{\beta^n} \stackrel{d}{pprox} G(\mathbf{d}^n) \sim \mathsf{Uniform}(G \text{ with deg seq } = \mathbf{d}^n)$$

- 1. $G^{\beta^n} | \{ \deg \operatorname{seq} = \mathbf{d}^n \} \stackrel{d}{=} G(\mathbf{d}^n)$
- **2.** $\mathbb{P}(G^{\beta^n} \text{ has deg seq } \mathbf{d}^n) \ge \exp(-o(n^{3/2+\varepsilon}))$
- The above implies

$$\mathbb{P}\left(G(\mathbf{d}^n) \in \mathcal{E}\right) = \mathbb{P}\left(\left.G^{\mathcal{B}^n} \in \mathcal{E} \,\middle|\, G^{\mathcal{B}^n} \text{ has deg seq } \mathbf{d}^n\right)\right.$$

$$\leq \mathbb{P}\left(G^{\mathcal{B}^n} \text{ has deg seq } \mathbf{d}^n\right)^{-1} \mathbb{P}\left(G^{\mathcal{B}^n} \in \mathcal{E}\right)$$

$$\leq \exp(o(n^{3/2+\varepsilon})) \, \mathbb{P}\left(G^{\mathcal{B}^n} \in \mathcal{E}\right)$$

- Sketch of proof:
 - Find MLE β^n for the β -model to the target degree sequence \mathbf{d}^n
 - Transference:

$$G^{\beta^n} \stackrel{d}{pprox} G(\mathbf{d}^n) \sim \mathsf{Uniform}(G \text{ with deg seq } = \mathbf{d}^n)$$

- 1. $G^{\beta^n} | \{ \deg \operatorname{seq} = \mathbf{d}^n \} \stackrel{d}{=} G(\mathbf{d}^n)$
- **2.** $\mathbb{P}(G^{\beta^n} \text{ has deg seq } \mathbf{d}^n) \geq \exp(-o(n^{3/2+\varepsilon}))$
- The above implies

$$\begin{split} \mathbb{P}\left(\textit{G}(\textbf{d}^{n}) \in \mathcal{E}\right) &= \mathbb{P}\left(\left.\textit{G}^{\boldsymbol{\beta}^{n}} \in \mathcal{E} \,\middle|\, \textit{G}^{\boldsymbol{\beta}^{n}} \text{ has deg seq } \textbf{d}^{n}\right) \\ &\leq \mathbb{P}(\left.\textit{G}^{\boldsymbol{\beta}^{n}} \text{ has deg seq } \textbf{d}^{n}\right)^{-1} \mathbb{P}\left(\left.\textit{G}^{\boldsymbol{\beta}^{n}} \in \mathcal{E}\right) \right. \\ &\leq \exp(o(n^{3/2+\varepsilon})) \, \, \mathbb{P}\left(\left.\textit{G}^{\boldsymbol{\beta}^{n}} \in \mathcal{E}\right) \right. \end{split}$$

• So events extremely rare under G^{β^n} are also rare under $G(\mathbf{d}^n)$

- Sketch of proof:
 - Find MLE β^n for the β -model to the target degree sequence \mathbf{d}^n
 - Transference:

$$G^{\beta^n} \stackrel{d}{\approx} G(\mathbf{d}^n) \sim \mathsf{Uniform}(G \text{ with deg seq } = \mathbf{d}^n)$$

- 1. $G^{\beta^n} | \{ \deg \operatorname{seq} = \mathbf{d}^n \} \stackrel{d}{=} G(\mathbf{d}^n)$
- **2.** $\mathbb{P}(G^{\beta^n} \text{ has deg seq } \mathbf{d}^n) \geq \exp(-o(n^{3/2+\varepsilon}))$
- · The above implies

$$\begin{split} \mathbb{P}\left(\textit{G}(\textbf{d}^{\textit{n}}) \in \mathcal{E}\right) &= \mathbb{P}\left(\left.\textit{G}^{\textit{\beta}^{\textit{n}}} \in \mathcal{E} \,\middle|\, \textit{G}^{\textit{\beta}^{\textit{n}}} \text{ has deg seq } \textbf{d}^{\textit{n}}\right) \\ &\leq \mathbb{P}(\left.\textit{G}^{\textit{\beta}^{\textit{n}}} \text{ has deg seq } \textbf{d}^{\textit{n}}\right)^{-1} \mathbb{P}\left(\left.\textit{G}^{\textit{\beta}^{\textit{n}}} \in \mathcal{E}\right) \\ &\leq \exp(\textit{o}(\textit{n}^{3/2+\varepsilon})) \,\, \mathbb{P}\left(\left.\textit{G}^{\textit{\beta}^{\textit{n}}} \in \mathcal{E}\right) \right. \end{split}$$

• So events extremely rare under G^{β^n} are also rare under $G(\mathbf{d}^n)$ e.g., $G(\mathbf{d}^n)$ cannot be too far from $\mathbb{E}[G^{\beta^n}] \approx G^{\beta^n}$

Outline

Introductior

Random graphs with given degree sequences

A parametric approach for RMs with given margin

Contingency tables and Typical tables

A non-parametric approach to RMs with given margir

Some results on RMs with exactly given margins

Phase diagram of tame margins

Open problems

Sinkhorn algorithm

Static Shrödinger bridge

Exponential tilting

▶ Goal: Approximate $X \sim \mu^{\otimes (m \times n)}$ given $X \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})$

Exponential tilting

- ▶ Goal: Approximate $X \sim \mu^{\otimes (m \times n)}$ given $X \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})$
- $ightharpoonup \mu_{ heta} :=$ exponentially tilted probability measure given by

$$\frac{d\mu_{\theta}}{d\mu}(x) = \mathrm{e}^{\theta x - \psi(\theta)}, \quad \psi(\theta) := \log \int_{\mathbb{R}} \mathrm{e}^{\theta x} d\mu(x) = \log \mathrm{partition} \ \mathrm{function}$$

Exponential tilting

- ▶ Goal: Approximate $X \sim \mu^{\otimes (m \times n)}$ given $X \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})$
- lacktriangledown $\mu_{ heta}:=$ exponentially tilted probability measure given by

$$\frac{d\mu_{\theta}}{d\mu}(x) = \mathrm{e}^{\theta x - \psi(\theta)}, \quad \psi(\theta) := \log \int_{\mathbb{R}} \mathrm{e}^{\theta x} d\mu(x) = \log \mathrm{partition} \ \mathrm{function}$$

Elementary facts:

$$\mathbb{E}_{X \sim \mu_{\theta}}[X] = \psi'(\theta), \quad \mathsf{Var}_{X \sim \mu_{\theta}}(X) = \psi''(\theta) > 0.$$

- ψ' : {tilting params.} \to (A, B) is strictly increasing (\triangleright tilt2mean function)
- $\phi = (\psi')^{-1}: (A, B) \to \{\text{tilting params.}\}\$ is strictly increasing (> mean2tilt function)

The (α, β) -model

▶ Goal: Approximate $X \sim \mu^{\otimes (m \times n)}$ given $X \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})$

The (α, β) -model

- ▶ Goal: Approximate $X \sim \mu^{\otimes (m \times n)}$ given $X \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})$
- ▶ Given vectors α, β , $Y = (Y_{ij}) \sim \mu_{\alpha \oplus \beta}$: RM w/ indep. entries $Y_{ij} \sim \mu_{\alpha(i)+\beta(j)}$

The (α, β) -model

- ▶ Goal: Approximate $X \sim \mu^{\otimes (m \times n)}$ given $X \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})$
- ▶ Given vectors α, β , $Y = (Y_{ij}) \sim \mu_{\alpha \oplus \beta}$: RM w/ indep. entries $Y_{ij} \sim \mu_{\alpha(i)+\beta(j)}$
- ▶ log-likelihood of margin (\mathbf{r}, \mathbf{c}) under Y w.r.t. $\mu^{\otimes (m \times n)}$:

$$\sum_{i,j} \left[x_{ij}(\alpha(i) + \beta(j)) - \psi(\alpha(i) + \beta(j)) \right] = \langle \mathbf{r}, \alpha \rangle + \langle \mathbf{c}, \beta \rangle - \sum_{i,j} \psi(\alpha(i) + \beta(j)).$$

- ▶ Goal: Approximate $X \sim \mu^{\otimes (m \times n)}$ given $X \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})$
- ▶ Given vectors α, β , $Y = (Y_{ij}) \sim \mu_{\alpha \oplus \beta}$: RM w/ indep. entries $Y_{ij} \sim \mu_{\alpha(i)+\beta(j)}$
- ▶ log-likelihood of margin (\mathbf{r}, \mathbf{c}) under Y w.r.t. $\mu^{\otimes (m \times n)}$:

$$\sum_{i,j} \left[x_{ij}(\alpha(i) + \beta(j)) - \psi(\alpha(i) + \beta(j)) \right] = \langle \mathbf{r}, \alpha \rangle + \langle \mathbf{c}, \beta \rangle - \sum_{i,j} \psi(\alpha(i) + \beta(j)).$$

► MLE for margin (**r**, **c**):

$$\sup_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left(\mathsf{g}^{\mathbf{r},\mathbf{c}}(\boldsymbol{\alpha},\boldsymbol{\beta}) := \langle \mathbf{r},\boldsymbol{\alpha} \rangle + \langle \mathbf{c},\boldsymbol{\beta} \rangle - \sum_{i,j} \psi(\boldsymbol{\alpha}(i) + \boldsymbol{\beta}(j)) \right),$$

- ▶ Goal: Approximate $X \sim \mu^{\otimes (m \times n)}$ given $X \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})$
- ▶ Given vectors α, β , $Y = (Y_{ij}) \sim \mu_{\alpha \oplus \beta}$: RM w/ indep. entries $Y_{ij} \sim \mu_{\alpha(i)+\beta(j)}$
- ▶ log-likelihood of margin (\mathbf{r}, \mathbf{c}) under Y w.r.t. $\mu^{\otimes (m \times n)}$:

$$\sum_{i,j} \left[x_{ij}(\alpha(i) + \beta(j)) - \psi(\alpha(i) + \beta(j)) \right] = \langle \mathbf{r}, \alpha \rangle + \langle \mathbf{c}, \beta \rangle - \sum_{i,j} \psi(\alpha(i) + \beta(j)).$$

► MLE for margin (r, c):

$$\sup_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left(g^{\mathbf{r},\mathbf{c}}(\boldsymbol{\alpha},\boldsymbol{\beta}) := \langle \mathbf{r},\boldsymbol{\alpha} \rangle + \langle \mathbf{c},\boldsymbol{\beta} \rangle - \sum_{i,j} \psi(\boldsymbol{\alpha}(i) + \boldsymbol{\beta}(j)) \right),$$

▶ Taking $\nabla g^{\mathbf{r},\mathbf{c}}(\alpha,\beta) = \mathbf{0}$, get the MLE equation:

$$\mathbb{E}[Y] = \psi'(\boldsymbol{\alpha} \oplus \boldsymbol{\beta}) \in \mathcal{T}(\mathbf{r}, \mathbf{c})$$

- ▶ Goal: Approximate $X \sim \mu^{\otimes (m \times n)}$ given $X \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})$
- ▶ Given vectors α, β , $Y = (Y_{ij}) \sim \mu_{\alpha \oplus \beta}$: RM w/ indep. entries $Y_{ij} \sim \mu_{\alpha(i)+\beta(j)}$
- ▶ log-likelihood of margin (\mathbf{r}, \mathbf{c}) under Y w.r.t. $\mu^{\otimes (m \times n)}$:

$$\sum_{i,j} \left[x_{ij}(\alpha(i) + \beta(j)) - \psi(\alpha(i) + \beta(j)) \right] = \langle \mathbf{r}, \alpha \rangle + \langle \mathbf{c}, \beta \rangle - \sum_{i,j} \psi(\alpha(i) + \beta(j)).$$

MLE for margin (r, c):

$$\sup_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left(g^{\mathbf{r},\mathbf{c}}(\boldsymbol{\alpha},\boldsymbol{\beta}) := \langle \mathbf{r},\boldsymbol{\alpha} \rangle + \langle \mathbf{c},\boldsymbol{\beta} \rangle - \sum_{i,j} \psi(\boldsymbol{\alpha}(i) + \boldsymbol{\beta}(j)) \right),$$

▶ Taking $\nabla g^{r,c}(\alpha,\beta) = \mathbf{0}$, get the MLE equation:

$$\mathbb{E}[Y] = \psi'(\boldsymbol{\alpha} \oplus \boldsymbol{\beta}) \in \mathcal{T}(\mathbf{r}, \mathbf{c})$$

• MLE is not unique: $(\alpha, \beta) \iff (\alpha + \lambda, \beta - \lambda)$

- ▶ Goal: Approximate $X \sim \mu^{\otimes (m \times n)}$ given $X \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})$
- ▶ Given vectors α, β , $Y = (Y_{ij}) \sim \mu_{\alpha \oplus \beta}$: RM w/ indep. entries $Y_{ij} \sim \mu_{\alpha(i)+\beta(j)}$
- ▶ log-likelihood of margin (\mathbf{r}, \mathbf{c}) under Y w.r.t. $\mu^{\otimes (m \times n)}$:

$$\sum_{i,j} \left[x_{ij}(\alpha(i) + \beta(j)) - \psi(\alpha(i) + \beta(j)) \right] = \langle \mathbf{r}, \alpha \rangle + \langle \mathbf{c}, \beta \rangle - \sum_{i,j} \psi(\alpha(i) + \beta(j)).$$

► MLE for margin (r, c):

$$\sup_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left(g^{\mathbf{r},\mathbf{c}}(\boldsymbol{\alpha},\boldsymbol{\beta}) := \langle \mathbf{r},\boldsymbol{\alpha} \rangle + \langle \mathbf{c},\boldsymbol{\beta} \rangle - \sum_{i,j} \psi(\boldsymbol{\alpha}(i) + \boldsymbol{\beta}(j)) \right),$$

▶ Taking $\nabla g^{r,c}(\alpha,\beta) = 0$, get the MLE equation:

$$\mathbb{E}[Y] = \psi'(\alpha \oplus \beta) \in \mathcal{T}(\mathsf{r}, \mathsf{c})$$

- MLE is not unique: $(\alpha, \beta) \iff (\alpha + \lambda, \beta \lambda)$
- How do we compute an MLE? No closed form; use Sinkhorn-type algorithm (will revisit)

Concentration of a random matrix with i.i.d. entries given margins

▶ (Informal result I: Maximum likelihood perspective)

$$\left[\begin{array}{l} X \sim \mu^{\otimes (m \times n)} \text{ conditioned on being in } \mathcal{T}_{\rho}(\mathbf{r},\mathbf{c}) \end{array}\right] \approx Y \sim \boldsymbol{\mu}_{\boldsymbol{\alpha} \oplus \boldsymbol{\beta}},$$
 where $(\boldsymbol{\alpha},\boldsymbol{\beta})$ is an MLE for (\mathbf{r},\mathbf{c})

▶ Behavior of an (α, β) -model depends crucially on how far the entries of $\alpha \oplus \beta$ are away from the extreme values $\phi(A)$ and $\phi(B)$

▶ Behavior of an (α, β) -model depends crucially on how far the entries of $\alpha \oplus \beta$ are away from the extreme values $\phi(A)$ and $\phi(B)$

Definition (Tame margins)

An $m \times n$ margin (\mathbf{r}, \mathbf{c}) is δ -tame for $\delta > 0$ if the MLE (α, β) exists and its entries satisfy (recall $(A, B) = \operatorname{Int}(\operatorname{supp}(\mu))$)

$$A_\delta := \max\left(A + \delta, -\frac{1}{\delta}\right) \leq \psi'(\boldsymbol{\alpha} \oplus \boldsymbol{\beta}) \leq \min\left(B - \delta, \frac{1}{\delta}\right) =: B_\delta.$$

▶ Behavior of an (α, β) -model depends crucially on how far the entries of $\alpha \oplus \beta$ are away from the extreme values $\phi(A)$ and $\phi(B)$

Definition (Tame margins)

An $m \times n$ margin (\mathbf{r}, \mathbf{c}) is δ -tame for $\delta > 0$ if the MLE (α, β) exists and its entries satisfy (recall $(A, B) = \operatorname{Int}(\operatorname{supp}(\mu))$)

$$A_\delta := \max\left(A + \delta, -\frac{1}{\delta}\right) \leq \psi'(\boldsymbol{\alpha} \oplus \boldsymbol{\beta}) \leq \min\left(B - \delta, \frac{1}{\delta}\right) =: B_\delta.$$

▶ If an MLE (α, β) exists for (\mathbf{r}, \mathbf{c}) , then (\mathbf{r}, \mathbf{c}) is always δ -tame for some $\delta > 0$ that may depend on m and n.

▶ Behavior of an (α, β) -model depends crucially on how far the entries of $\alpha \oplus \beta$ are away from the extreme values $\phi(A)$ and $\phi(B)$

Definition (Tame margins)

An $m \times n$ margin (\mathbf{r}, \mathbf{c}) is δ -tame for $\delta > 0$ if the MLE (α, β) exists and its entries satisfy (recall $(A, B) = \operatorname{Int}(\operatorname{supp}(\mu))$)

$$A_\delta := \max\left(A + \delta, -rac{1}{\delta}
ight) \leq \psi'(oldsymbol{lpha} \oplus oldsymbol{eta}) \leq \min\left(B - \delta, rac{1}{\delta}
ight) =: B_\delta.$$

- ▶ If an MLE (α, β) exists for (\mathbf{r}, \mathbf{c}) , then (\mathbf{r}, \mathbf{c}) is always δ -tame for some $\delta > 0$ that may depend on m and n.
- A technical issue: When is a sequence of margins uniformly δ -tame? (will revisit)

Transference for random matrices with given margin

Theorem (Transference; L-M '24+)

 $(\mathbf{r},\mathbf{c}) = m \times n \ \delta$ -tame margin with an MLE (α,β) , and let $X \sim \mu^{\otimes (m \times n)}$ be conditional on $X \in \mathcal{T}_{\rho}(\mathbf{r},\mathbf{c})$ for some $\rho \geq 0$. Let $Y \sim \mu_{\alpha \oplus \beta}$. Then for some constant $C = C(\mu,\delta) > 0$, for each measurable set $\mathcal{E} \subseteq \mathbb{R}^{m \times n}$,

 $(\mathbf{r},\mathbf{c}) = m \times n \ \delta$ -tame margin with an MLE (α,β) , and let $X \sim \mu^{\otimes (m \times n)}$ be conditional on $X \in \mathcal{T}_{\rho}(\mathbf{r},\mathbf{c})$ for some $\rho \geq 0$. Let $Y \sim \mu_{\alpha \oplus \beta}$. Then for some constant $C = C(\mu,\delta) > 0$, for each measurable set $\mathcal{E} \subseteq \mathbb{R}^{m \times n}$,

$$\mathbb{P}(X \in \mathcal{E}) \leq \exp(C\rho) \, \mathbb{P}\left(Y \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})\right)^{-1} \, \mathbb{P}\left(Y \in \mathcal{E}\right).$$

 $(\mathbf{r},\mathbf{c}) = m \times n \ \delta$ -tame margin with an MLE (α,β) , and let $X \sim \mu^{\otimes (m \times n)}$ be conditional on $X \in \mathcal{T}_{\rho}(\mathbf{r},\mathbf{c})$ for some $\rho \geq 0$. Let $Y \sim \mu_{\alpha \oplus \beta}$. Then for some constant $C = C(\mu,\delta) > 0$, for each measurable set $\mathcal{E} \subseteq \mathbb{R}^{m \times n}$,

$$\mathbb{P}(X \in \mathcal{E}) \leq \exp(C\rho) \, \mathbb{P}\left(Y \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})\right)^{-1} \, \mathbb{P}\left(Y \in \mathcal{E}\right).$$

In particular, if $\rho \geq \sqrt{mn(m+n)}$, then for each $t \geq 0$,

$$\mathbb{P}(X \in \mathcal{E}) \leq 2 \exp(C\rho) \mathbb{P}(Y \in \mathcal{E}).$$

 $(\mathbf{r},\mathbf{c}) = m \times n \ \delta$ -tame margin with an MLE (α,β) , and let $X \sim \mu^{\otimes (m \times n)}$ be conditional on $X \in \mathcal{T}_{\rho}(\mathbf{r},\mathbf{c})$ for some $\rho \geq 0$. Let $Y \sim \mu_{\alpha \oplus \beta}$. Then for some constant $C = C(\mu,\delta) > 0$, for each measurable set $\mathcal{E} \subseteq \mathbb{R}^{m \times n}$,

$$\mathbb{P}(X \in \mathcal{E}) \leq \exp(C\rho) \, \mathbb{P}\left(Y \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})\right)^{-1} \, \mathbb{P}\left(Y \in \mathcal{E}\right).$$

In particular, if $\rho \geq \sqrt{mn(m+n)}$, then for each $t \geq 0$,

$$\mathbb{P}(X \in \mathcal{E}) \leq 2 \exp(C\rho) \mathbb{P}(Y \in \mathcal{E}).$$

• Events extremely rare under Y are also rare under X

 $(\mathbf{r},\mathbf{c}) = m \times n \ \delta$ -tame margin with an MLE (α,β) , and let $X \sim \mu^{\otimes (m \times n)}$ be conditional on $X \in \mathcal{T}_{\rho}(\mathbf{r},\mathbf{c})$ for some $\rho \geq 0$. Let $Y \sim \mu_{\alpha \oplus \beta}$. Then for some constant $C = C(\mu,\delta) > 0$, for each measurable set $\mathcal{E} \subseteq \mathbb{R}^{m \times n}$,

$$\mathbb{P}(X \in \mathcal{E}) \leq \exp(C\rho) \, \mathbb{P}\left(Y \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})\right)^{-1} \, \mathbb{P}\left(Y \in \mathcal{E}\right).$$

In particular, if $\rho \geq \sqrt{mn(m+n)}$, then for each $t \geq 0$,

$$\mathbb{P}(X \in \mathcal{E}) \leq 2 \exp(C\rho) \mathbb{P}(Y \in \mathcal{E}).$$

- Events extremely rare under Y are also rare under X
- $\mathbb{P}(Y \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})) \ge 1/2$ for $\rho \sim \sqrt{mn(m+n)}$ $(\mathbb{E}[Y] \in \mathcal{T}(\mathbf{r}, \mathbf{c})$ and use concentration for Y)

Concentration in cut norm

▶ A *kernel* is an integrable function $W: [0,1]^2 \to \mathbb{R}$. The *cut-norm* of a kernel W is defined as

$$||W||_{\square} := \sup_{S,T\subseteq[0,1]} \left| \int_{S\times T} W(x,y) dx dy \right|.$$

Given an $m \times n$ matrix A, define a step-kernel W_A as

$$W_A(x,y) := A_{ij} \text{ if } (x,y) \in R_{ij} = \left(\frac{i-1}{m}, \frac{i}{m}\right] \times \left(\frac{j-1}{n}, \frac{j}{n}\right]$$

A *kernel* is an integrable function $W:[0,1]^2 \to \mathbb{R}$. The *cut-norm* of a kernel W is defined as

$$\|W\|_{\square} := \sup_{S,T\subseteq[0,1]} \left| \int_{S\times T} W(x,y) \, dx \, dy \right|.$$

Given an $m \times n$ matrix A, define a step-kernel W_A as

$$W_A(x,y) := A_{ij} \text{ if } (x,y) \in R_{ij} = \left(\frac{i-1}{m}, \frac{i}{m}\right] \times \left(\frac{j-1}{n}, \frac{j}{n}\right]$$

Theorem (Concentration in cut norm; L-M '24+)

Keep the same setting as before. Then there exists a constant $C = C(\delta, \mu) > 0$ s.t.

$$\mathbb{P}\left(\|\mathit{W}_{\mathsf{X}} - \mathit{W}_{\mathbb{E}[\mathsf{Y}]}\|_{\square} \geq t\right) \leq \underbrace{\mathbb{P}\left(\mathit{Y} \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})\right)^{-1}}_{\text{transference cost}} \underbrace{\exp\left(\mathit{C}\rho + (\mathit{m} + \mathit{n} + 1)\log 2 - \frac{t^{2}\mathit{m}\mathit{n}}{\mathit{C}}\right)}_{\text{Concentration of } \|\mathit{Y} - \mathbb{E}[\mathsf{Y}]\|_{\square}}.$$

Outline

Introductior

Random graphs with given degree sequences

A parametric approach for RMs with given margin

Contingency tables and Typical tables

A non-parametric approach to RMs with given margir

Some results on RMs with exactly given margins

Phase diagram of tame margins

Open problems

Sinkhorn algorithm

Static Shrödinger bridge

Uniform contingency tables in statistics

 Contingency tables = matrices with non-netative integer entries with fixed row an column margins

Data								Null model						
1	0	3	2	0	7	13	v.s.							13
1	2	0	4	3	0	10								10
7	5	2	1	0	0	15			v	v _	$=(X_i)$	\		15
0	0	3	1	3	9	16					()			16
0	3	1	8	0	2	14								14
5	3	0	3	5	3	19								19
9	13	9	19	11	21			9	13	9	19	11	21	

- Contingency tables are fundamental tools in statistics for studying dependence structure between two or more variables
- Uniform contingency table $X = (X_{ij})$ serves as the maximum entropy null model given margins

Conjecture (Independence heuristic, Good '50)

$$|\mathcal{T}(\mathbf{r},\mathbf{c})| pprox \mathrm{G}(\mathbf{r},\mathbf{c})$$

where

$$G(\mathbf{r},\mathbf{c}) := \binom{N+mn-1}{mn-1}^{-1} \prod_{i=1}^{m} \binom{\mathbf{r}(i)+n-1}{n-1} \prod_{j=1}^{n} \binom{\mathbf{c}(j)+m-1}{m-1}.$$

Conjecture (Independence heuristic, Good '50)

$$|\mathcal{T}(\textbf{r},\textbf{c})|\approx \mathrm{G}(\textbf{r},\textbf{c})$$

where

$$G(\mathbf{r},\mathbf{c}) := \binom{N+mn-1}{mn-1}^{-1} \prod_{i=1}^{m} \binom{\mathbf{r}(i)+n-1}{n-1} \prod_{j=1}^{n} \binom{\mathbf{c}(j)+m-1}{m-1}.$$

Good says: "A random table with total sum *N* independently satisfies the row and column margins"

Conjecture (Independence heuristic, Good '50)

$$|\mathcal{T}(\textbf{r},\textbf{c})|\approx \mathrm{G}(\textbf{r},\textbf{c})$$

where

$$\mathrm{G}(\mathsf{r},\mathsf{c}) \,:=\, \binom{\mathsf{N}+m\mathsf{n}-1}{m\mathsf{n}-1}^{-1}\,\prod_{i=1}^m \binom{\mathsf{r}(i)+\mathsf{n}-1}{\mathsf{n}-1}\,\prod_{j=1}^n \binom{\mathsf{c}(j)+\mathsf{m}-1}{\mathsf{m}-1}.$$

Good says: "A random table with total sum *N* independently satisfies the row and column margins"

- $X \sim \text{Uniform } (S_N), S_N := \{\text{CT's with total sum } N = \sum r(\hat{i}) = \sum c(\hat{j})\}$
- $\mathcal{R}_n(\mathbf{r}) := \{X \text{ has row margins } \mathbf{r}\}, \quad \mathcal{C}_m(\mathbf{c}) := \{X \text{ has column margins } \mathbf{c}\}.$
- $\bullet \quad \mathbb{P}(\mathcal{R}_{n}(r) \cap \mathcal{C}_{m}(c)) \ = \ \frac{\mathrm{T}(r,c)}{|\mathcal{S}_{N}|}, \quad \mathbb{P}(\mathcal{R}_{n}(r)) \ = \ \frac{|\mathcal{R}_{n}(r)|}{|\mathcal{S}_{N}|}, \quad \mathbb{P}(\mathcal{C}_{n}(c)) \ = \ \frac{|\mathcal{C}_{n}(c)|}{|\mathcal{S}_{N}|}$
- $\bullet \quad |\mathcal{S}_{\mathcal{N}}| = \binom{\mathcal{N} + mn 1}{mn 1}, \ |\mathcal{R}_{\mathcal{N}}(r)| = \prod_{i=1}^{m} \binom{r(i) + n 1}{n 1}, \ |\mathcal{C}_{\mathcal{M}}(e)| = \prod_{i=1}^{n} \binom{e(j) + m 1}{m 1}$

$$\frac{\mathbb{P}(\mathcal{R}_n(\mathbf{r})\cap C_m(\mathbf{c}))}{\mathbb{P}(\mathcal{R}_n(\mathbf{r}))\,\mathbb{P}(C_m(\mathbf{c}))} = \frac{|\mathcal{T}(\mathbf{r},\mathbf{c})|}{\mathrm{G}(\mathbf{r},\mathbf{c})}$$

Good's Independence Heuristic — Uniform and small margins

History of the Independence Heuristic (IH) $|\mathcal{T}(r,c)| \approx \mathrm{G}(a,b)$:

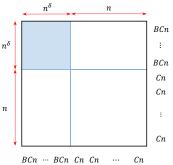
- Given implicitly by Good in 1963 [13] and later formally in 1963 [11] and 1976 [12]
- Experimentally verified by Good and Crook [10] in 1977 and Diagonis and Gangolli
 [7] in 1995
- Canfield and McKay '10 [4]: For m = n and $\mathbf{r} = \mathbf{c} = (\lfloor Cn \rfloor, \dots, \lfloor Cn \rfloor)$,

$$\log |\mathcal{T}(\mathbf{r}, \mathbf{c})| = [(1+C)\log(1+C) - C\log(C)]n^2 - n\log n$$
$$- n\log 2\pi C(1+C) + \log n + O(1)$$
$$\sim \log \sqrt{e} G(\mathbf{r}, \mathbf{c})$$

• In 2008, Greenhill and McKay [14] proved same asymptotics for uniform but sparse margins: $\max(\mathbf{r}) \cdot \max(\mathbf{c}) = O(N^{2/3})$

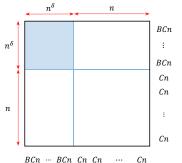
But what about non-uniform margins?

• 2 × 2 block (Barvinok) margins: $\mathbf{r} = \mathbf{c} = (\overbrace{BCn, \dots, BCn}^{n^{\delta}}, \overbrace{Cn, \dots, Cn}^{(n-n^{\delta})}), \ 0 \leq \delta \leq 1$



But what about non-uniform margins?

• 2 × 2 block (Barvinok) margins: $\mathbf{r} = \mathbf{c} = (BCn, \dots, BCn, Cn, \dots, Cn), 0 \le \delta \le 1$



• IH undercounts: For $\delta = 1$, Barvinok [1] shows that

$$\lim_{n \to \infty} \frac{1}{n^2} \log |\mathcal{T}(\mathbf{r}, \mathbf{c})| \, > \, \lim_{n \to \infty} \frac{1}{n^2} \log \mathrm{G}(\mathbf{r}, \mathbf{c}).$$

In other words, the rows and columns of CTs attract each other

▶ Barvinok '10: "To count $|\mathcal{T}(\mathbf{r}, \mathbf{c})|$, need to better understand Uniform $(\mathcal{T}(\mathbf{r}, \mathbf{c}))$ "

- ▶ Barvinok '10: "To count $|\mathcal{T}(\mathbf{r}, \mathbf{c})|$, need to better understand Uniform $(\mathcal{T}(\mathbf{r}, \mathbf{c}))$ "
- ▶ (Barvinok '10 [2]) For a $m \times n$ margin (\mathbf{r}, \mathbf{c}) , the corresponding typical table is

$$Z^{\mathsf{r,c}} := rg \max_{Q \in \mathcal{T}(\mathsf{r,c})} \left[g(Z) = \sum_{i,j} \underbrace{(z_{ij}+1) \log(z_{ij}+1) - z_{ij} \log(z_{ij})}_{=\mathsf{Entropy}(\mathsf{Geom}(\mathsf{mean} = z_{ij}))} \right]$$

- ▶ Barvinok '10: "To count $|\mathcal{T}(\mathbf{r}, \mathbf{c})|$, need to better understand Uniform $(\mathcal{T}(\mathbf{r}, \mathbf{c}))$ "
- ▶ (Barvinok '10 [2]) For a $m \times n$ margin (\mathbf{r}, \mathbf{c}) , the corresponding typical table is

$$Z^{\mathsf{r,c}} := \argmax_{Q \in \mathcal{T}(\mathsf{r,c})} \left[g(Z) = \sum_{i,j} \underbrace{(z_{ij}+1) \log(z_{ij}+1) - z_{ij} \log(z_{ij})}_{= \mathsf{Entropy}(\mathsf{Geom}(\mathsf{mean} = z_{ij}))} \right]$$

Barvinok's insight:

$$\mathsf{Uniform}(\mathcal{T}(\textbf{r},\textbf{c})) \approx \textit{\textbf{Z}}^{\textbf{r},\textbf{c}}$$

- ▶ Barvinok '10: "To count $|\mathcal{T}(\mathbf{r}, \mathbf{c})|$, need to better understand Uniform $(\mathcal{T}(\mathbf{r}, \mathbf{c}))$ "
- ▶ (Barvinok '10 [2]) For a $m \times n$ margin (\mathbf{r}, \mathbf{c}) , the corresponding typical table is

$$Z^{\mathsf{r,c}} := \argmax_{Q \in \mathcal{T}(\mathsf{r,c})} \left[g(Z) = \sum_{i,j} \underbrace{(z_{ij}+1) \log(z_{ij}+1) - z_{ij} \log(z_{ij})}_{= \mathsf{Entropy}(\mathsf{Geom}(\mathsf{mean} = z_{ij}))} \right]$$

Barvinok's insight:

$$\mathsf{Uniform}(\mathcal{T}(\textbf{r},\textbf{c})) \approx \textit{Z}^{\textbf{r},\textbf{c}}$$

• (Barvinok '09 [1], '10 [2])

$$g(Z^{\mathsf{r},\mathsf{c}}) - \gamma n \log n \leq \log |\mathcal{T}(\mathsf{r},\mathsf{c})| \leq g(Z^{\mathsf{r},\mathsf{c}})$$

- ▶ Barvinok '10: "To count $|\mathcal{T}(\mathbf{r}, \mathbf{c})|$, need to better understand Uniform $(\mathcal{T}(\mathbf{r}, \mathbf{c}))$ "
- ▶ (Barvinok '10 [2]) For a $m \times n$ margin (\mathbf{r}, \mathbf{c}) , the corresponding typical table is

$$Z^{\mathsf{r,c}} := \argmax_{Q \in \mathcal{T}(\mathsf{r,c})} \left[g(Z) = \sum_{i,j} \underbrace{(z_{ij}+1) \log(z_{ij}+1) - z_{ij} \log(z_{ij})}_{= \mathsf{Entropy}(\mathsf{Geom}(\mathsf{mean} = z_{ij}))} \right]$$

Barvinok's insight:

$$\mathsf{Uniform}(\mathcal{T}(\textbf{r},\textbf{c})) \approx \textit{Z}^{\textbf{r},\textbf{c}}$$

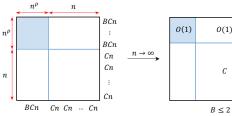
• (Barvinok '09 [1], '10 [2])

$$g(Z^{r,c}) - \gamma n \log n \leq \log |\mathcal{T}(r,c)| \leq g(Z^{r,c})$$

• Brändén, Leake, and Pak '23 [3] generalized this result to CTs with possibly bounded integer values (Using Lorenzian polynomials)

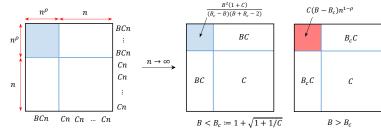
Barvinok's conjecture

▶ In 2010, Barbinok conjectured that there is a phase transition in Uniform($\mathcal{T}(Barv. margin)$) as B increases



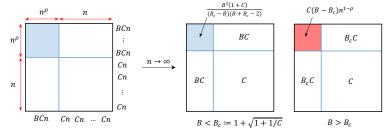
Sharp phase transition in typical tables

- ► Typical tables can change drastically by a small change in the margin!
 - For $0 \le \delta < 1$, Dittmer, Lyu, and Pak [8] show that $Z^{r,c}$ undergoes a **sharp** phase transition at $B_c = 1 + \sqrt{1 + C^{-1}}$:



Sharp phase transition in typical tables

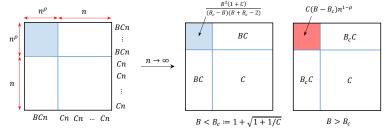
- ► Typical tables can change drastically by a small change in the margin!
 - For $0 \le \delta < 1$, Dittmer, Lyu, and Pak [8] show that $Z^{r,c}$ undergoes a sharp phase transition at $B_c = 1 + \sqrt{1 + C^{-1}}$:



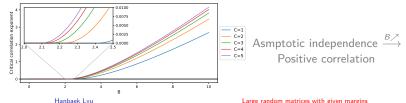
• δ -tame for $B < B_c$, non-tame for $B > B_c$

Sharp phase transition in typical tables

- Typical tables can change drastically by a small change in the margin!
 - For $0 \le \delta < 1$, Dittmer, Lyu, and Pak [8] show that $Z^{r,c}$ undergoes a sharp phase transition at $B_c = 1 + \sqrt{1 + C^{-1}}$:



- δ -tame for $B < B_c$, non-tame for $B > B_c$
- This result was used to obtain a second-order phase transition in the number of CTs with Barvinok margin by Lyu and Pak '22 [15] $(\log |\mathcal{T}(\mathbf{r}, \mathbf{c})| \approx g(Z^{r,c}))$



Outline

Introductior

Random graphs with given degree sequences

A parametric approach for RMs with given margin

Contingency tables and Typical tables

A non-parametric approach to RMs with given margin

Some results on RMs with exactly given margins

Phase diagram of tame margins

Open problems

Sinkhorn algorithm

Static Shrödinger bridge

Minimum relative entropy model

▶ Goal: Approximate $X \sim \mu^{\otimes (m \times n)}$ given $X \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})$

Minimum relative entropy model

- ▶ Goal: Approximate $X \sim \mu^{\otimes (m \times n)}$ given $X \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})$
- ▶ For each probability measure \mathcal{H} on $\mathbb{R}^{m \times n}$, the relative entropy of \mathcal{H} from \mathcal{R} is

$$D_{\text{KL}}(\mathcal{H} \, \| \, \mathcal{R}) := \int_{\mathbf{x} \in \mathbb{R}^{m \times n}} \frac{d\mathcal{H}(\mathbf{x})}{d\mathcal{R}(\mathbf{x})} \log \left(\frac{d\mathcal{H}(\mathbf{x})}{d\mathcal{R}(\mathbf{x})} \right) \, \mathcal{R}(d\mathbf{x}) \quad \text{if } \mathcal{H} \ll \mathcal{R} \, \text{ and } \infty \, \, o/w,$$

Minimum relative entropy model

- ▶ Goal: Approximate $X \sim \mu^{\otimes (m \times n)}$ given $X \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})$
- ▶ For each probability measure \mathcal{H} on $\mathbb{R}^{m \times n}$, the *relative entropy of* \mathcal{H} *from* \mathcal{R} is

$$D_{\mathit{KL}}(\mathcal{H} \parallel \mathcal{R}) := \int_{\mathbf{x} \in \mathbb{R}^{m \times n}} \frac{d\mathcal{H}(\mathbf{x})}{d\mathcal{R}(\mathbf{x})} \log \left(\frac{d\mathcal{H}(\mathbf{x})}{d\mathcal{R}(\mathbf{x})} \right) \, \mathcal{R}(d\mathbf{x}) \quad \textit{if } \mathcal{H} \ll \mathcal{R} \, \textit{ and } \infty \, \textit{ o/w},$$

Minimum relative entropy principle (information projection)

$$\begin{split} \left[X \sim \mu^{\otimes (m \times n)} \text{ given } X \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c}) \right] \\ & \stackrel{d}{\approx} \underset{\mathcal{U} \in \mathcal{D}^{m \times n}}{\min} D_{KL}(\mathcal{H} \parallel \mathcal{R}) \quad \text{subject to} \quad \mathbb{E}_{X \sim \mathcal{H}}[(r(X), c(X))] = (\mathbf{r}, \mathbf{c}) \end{split}$$

- ▶ Goal: Approximate $X \sim \mu^{\otimes (m \times n)}$ given $X \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c})$
- ▶ For each probability measure \mathcal{H} on $\mathbb{R}^{m \times n}$, the *relative entropy of* \mathcal{H} *from* \mathcal{R} is

$$D_{\mathsf{KL}}(\mathcal{H} \parallel \mathcal{R}) := \int_{\mathbf{x} \in \mathbb{R}^{m \times n}} \frac{d\mathcal{H}(\mathbf{x})}{d\mathcal{R}(\mathbf{x})} \log \left(\frac{d\mathcal{H}(\mathbf{x})}{d\mathcal{R}(\mathbf{x})} \right) \, \mathcal{R}(d\mathbf{x}) \quad \text{if } \mathcal{H} \ll \mathcal{R} \, \text{ and } \infty \, \, \text{o/w},$$

Minimum relative entropy principle (information projection)

$$\begin{split} \left[X \sim \mu^{\otimes (m \times n)} \text{ given } X \in \mathcal{T}_{\rho}(\mathbf{r}, \mathbf{c}) \right] \\ & \stackrel{d}{\approx} \underset{\mathcal{H} \in \mathcal{P}^{m \times n}}{\min} D_{\mathit{KL}}(\mathcal{H} \parallel \mathcal{R}) \quad \text{subject to} \quad \mathbb{E}_{X \sim \mathcal{H}}[(\mathit{r}(X), \mathit{c}(X))] = (\mathbf{r}, \mathbf{c}) \\ & = \bigotimes_{i,j} \mu_{\phi(z_{ij})} \quad \text{where} \quad Z = \underset{Q = (q_{ij}) \in \mathcal{T}(\mathbf{r}, \mathbf{c})}{\arg\min} \underbrace{D_{\mathit{KL}}\left(\bigotimes_{i,j} \mu_{\phi(q_{ij})} \middle\| \mu^{\otimes (m \times n)}\right)}_{= \sum_{i,j} D_{\mathit{KL}}(\mu_{\phi(q_{ij})} \middle\| \mu)} \end{split}$$

Typical table

▶ The **relative entropy** from the base mesure μ to the tilted probability measure μ_{θ} :

$$D(\mu_{ heta}\|\mu) := \int_{\mathsf{x} \in \mathbb{R}} \log \left(rac{d\mu_{ heta}}{d\mu}(\mathsf{x})
ight) \, d\mu_{ heta}(\mathsf{x}) = heta \psi'(heta) - \psi(heta).$$

▶ The **relative entropy** from the base mesure μ to the tilted probability measure μ_{θ} :

$$D(\mu_{\theta}\|\mu) := \int_{\mathbf{x} \in \mathbb{R}} \log \left(\frac{d\mu_{\theta}}{d\mu}(\mathbf{x}) \right) d\mu_{\theta}(\mathbf{x}) = \theta \psi'(\theta) - \psi(\theta).$$

▶ Fix a $m \times n$ margin $(\mathbf{r}, \mathbf{c}) \in \mathbb{R}^m \times \mathbb{R}^n$. The **typical table** Z for margin (\mathbf{r}, \mathbf{c}) is

$$Z^{\mathsf{r,c}} := \mathop{\arg\min}_{\mathbf{X} \in \mathcal{T}(\mathbf{r,c})} \sum_{i,j} \quad \underbrace{D(\mu_{\phi(\mathbf{x}_{ij})} \parallel \mu)}_{f(\mathbf{x}) := D(\mu_{\phi(\mathbf{x})} \parallel \mu) = \mathbf{x} \, \phi(\mathbf{x}) - \psi(\phi(\mathbf{x}))}$$

- Strictly convex objective since $f'(x) = \phi(x)$, $f'(x) = \phi'(x) = \frac{1}{Var(\mu_{\phi(x)})} > 0$
- So the typical table $Z^{r,c}$ is unique if it exists

Typical table

▶ The **relative entropy** from the base mesure μ to the tilted probability measure μ_{θ} :

$$D(\mu_{ heta}\|\mu) := \int_{\mathsf{x} \in \mathbb{R}} \log \left(rac{d\mu_{ heta}}{d\mu}(\mathsf{x})
ight) \, d\mu_{ heta}(\mathsf{x}) = heta \psi'(heta) - \psi(heta).$$

▶ Fix a $m \times n$ margin $(\mathbf{r}, \mathbf{c}) \in \mathbb{R}^m \times \mathbb{R}^n$. The **typical table** Z for margin (\mathbf{r}, \mathbf{c}) is

$$Z^{\mathsf{r,c}} := \mathop{\arg\min}_{\mathbf{X} \in \mathcal{T}(\mathbf{r,c})} \sum_{i,j} \quad \underbrace{D(\mu_{\phi(\mathbf{x}_{ij})} \parallel \mu)}_{f(\mathbf{x}) := D(\mu_{\phi(\mathbf{x})} \parallel \mu) = \mathbf{x} \, \phi(\mathbf{x}) - \psi(\phi(\mathbf{x}))}$$

- Strictly convex objective since $f'(x) = \phi(x)$, $f'(x) = \phi'(x) = \frac{1}{Var(\mu_{\phi(x)})} > 0$
- So the typical table $Z^{r,c}$ is unique if it exists
- ▶ By multivariate Lagrange multipliers, there are 'dual variables' $\alpha \in \mathbb{R}^m$, $\beta \in \mathbb{R}^n$ s.t.

$$Z^{\mathsf{r},\mathsf{c}} = \psi'(oldsymbol{lpha} \oplus oldsymbol{eta}) \qquad = \mathbb{E}[\mu_{oldsymbol{lpha} \oplus oldsymbol{eta}}]!!$$

• Dual variable (α, β) determined by the margin condition: (MLE!!)

$$\sum_{i=1}^{m} \psi'(\alpha(i) + \beta(j)) = \mathbf{r}(i), \qquad \sum_{i=1}^{n} \psi'(\alpha(i) + \beta(j)) = \mathbf{c}(j) \qquad \forall i, j$$

Concentration of a random matrix with i.i.d. entries given margins

(Informal result II: Minimum relative entropy perspective)

$$\begin{bmatrix} X \sim \mu^{\otimes (m \times n)} \text{ conditioned on being in } \mathcal{T}(\mathbf{r}, \mathbf{c}) \end{bmatrix} \approx \text{typical table } Z^{\mathbf{r}, \mathbf{c}}$$
 where $Z^{\mathbf{r}, \mathbf{c}} = \psi'(\alpha \oplus \beta)$ for some $\alpha \in \mathbb{R}^m, \beta \in \mathbb{R}^n$

 $\mu = Gaussian$

$$\Theta = \mathbb{R}, \qquad (A, B) = (-\infty, \infty), \qquad \psi(\theta) = \frac{\theta^2}{2}, \qquad \psi'(\theta) = \theta, \qquad \phi(x) = x$$

$$f(x) = x\phi(x) - \psi(\phi(x)) = \frac{x^2}{2}$$

$$Z_{ij}^{r,c} = \frac{\mathbf{r}(i)}{n} + \frac{\mathbf{c}(j)}{m} - \frac{N}{mn} \qquad (N = \sum_{i} \mathbf{r}(i) = \sum_{i} \mathbf{c}(j))$$

 $\mu = Gaussian$

$$\Theta = \mathbb{R}, \qquad (A, B) = (-\infty, \infty), \qquad \psi(\theta) = \frac{\theta^2}{2}, \qquad \psi'(\theta) = \theta, \qquad \phi(x) = x$$

$$f(x) = x\phi(x) - \psi(\phi(x)) = \frac{x^2}{2}$$

$$Z_{ij}^{r,c} = \frac{\mathbf{r}(i)}{n} + \frac{\mathbf{c}(j)}{m} - \frac{N}{mn} \qquad (N = \sum_{i} \mathbf{r}(i) = \sum_{j} \mathbf{c}(j))$$

 $\mu = Poisson$

$$\Theta = \mathbb{R}, \quad (A, B) = (0, \infty), \quad \psi(\theta) = e^{\theta}, \quad \psi'(\theta) = e^{\theta}, \quad \phi(x) = \log x$$

$$f(x) = x\phi(x) - \psi(\phi(x)) = x\log x - x$$

$$Z_{ij}^{\mathsf{r,c}} = e^{\alpha(i) + \beta(j)} = \mathbf{r}(i)\mathbf{c}(j)/N \quad (\triangleright \text{ Fisher-Yates table})$$

Examples

 $\mu = Bernoulli(1/2)$

$$\Theta=\mathbb{R},\quad (A,B)=(0,1),\quad \psi(\theta)=\log\frac{1+e^{\theta}}{2},\quad \psi'(\theta)=\frac{e^{\theta}}{1+e^{\theta}},\quad \phi(x)=\log\frac{x}{1-x}$$

$$f(x) = x\phi(x) - \psi(\phi(x)) = x \log x + (1-x) \log(1-x)$$
 \triangleright -Entropy(Ber(x))

$$Z_{ij}^{\mathsf{r,c}} = \frac{1}{\exp(-\alpha(i) - \beta(i)) + 1}$$
 s.t. $Z^{\mathsf{r,c}} \in \mathcal{T}(\mathsf{r},\mathsf{c})$

Examples

 $\mu = \text{Bernoulli}(1/2)$

$$\Theta = \mathbb{R}, \quad (A,B) = (0,1), \quad \psi(\theta) = \log \frac{1+e^{\theta}}{2}, \quad \psi'(\theta) = \frac{e^{\theta}}{1+e^{\theta}}, \quad \phi(x) = \log \frac{x}{1-x}$$

$$f(x) = x\phi(x) - \psi(\phi(x)) = x \log x + (1-x) \log(1-x) \qquad \triangleright -Entropy(Ber(x))$$

$$Z_{ij}^{\mathsf{r,c}} = \frac{1}{\exp(-\alpha(i) - \beta(i)) + 1}$$
 s.t. $Z^{\mathsf{r,c}} \in \mathcal{T}(\mathsf{r},\mathsf{c})$

 $\mu = \mathsf{Counting}(\mathbb{Z}_{>0})$

$$\Theta=(-\infty,0),\quad \psi(\theta)=-\log(1-e^{\theta}),\quad \psi'(\theta)=\frac{e^{\theta}}{1-e^{\theta}},\quad \phi(x)=-\log(1+x^{-1})$$

$$f(x) = x\phi(x) - \psi(\phi(x)) = x \log x - (1+x) \log (1+x)$$
 \triangleright -Entropy(Geom(x))

$$Z_{ij}^{\mathsf{r,c}} = \frac{1}{\exp(-\alpha(i) - \beta(i)) - 1}$$
 s.t. $Z^{\mathsf{r,c}} \in \mathcal{T}(\mathsf{r},\mathsf{c})$

Theorem (Strong duality; L-M '24+)

Static Schrödinger Bridge b/w $\mathbf{r}, \mathbf{c} = Kantorovich$ dual with potential (α, β)

Non-parametric = Parametric

▶ We know $X \approx Z^{\mathbf{r}_m, \mathbf{c}_n}$ in $\|\cdot\|_{\square}$. Does the typical tables (and the MLEs) have scaling limit as $(\mathbf{r}_m, \mathbf{c}_n) \to (\mathbf{r}, \mathbf{c})$?

- ▶ We know $X \approx Z^{\mathbf{r}_m, \mathbf{c}_n}$ in $\|\cdot\|_{\square}$. Does the typical tables (and the MLEs) have scaling limit as $(\mathbf{r}_m, \mathbf{c}_n) \to (\mathbf{r}, \mathbf{c})$?
- A continuum margin $(\mathbf{r}, \mathbf{c}) = \text{integrable functions } \mathbf{r}, \mathbf{c} : (0, 1] \to \mathbb{R}$ such that $\int_0^1 \mathbf{r}(x) dx = \int_0^1 \mathbf{c}(y) dy$

- ▶ We know $X \approx Z^{\mathbf{r}_m, \mathbf{c}_n}$ in $\|\cdot\|_{\square}$. Does the typical tables (and the MLEs) have scaling limit as $(\mathbf{r}_m, \mathbf{c}_n) \to (\mathbf{r}, \mathbf{c})$?
- A continuum margin $(\mathbf{r}, \mathbf{c}) = \text{integrable functions } \mathbf{r}, \mathbf{c} : (0, 1] \to \mathbb{R}$ such that $\int_0^1 \mathbf{r}(x) \, dx = \int_0^1 \mathbf{c}(y) \, dy$
- For a $m \times n$ discrete margin $(\mathbf{r}_m, \mathbf{c}_n)$, define the corresponding **continuum step** margin $(\bar{\mathbf{r}}_m, \bar{\mathbf{c}}_n)$ as

$$\bar{\mathbf{r}}_m(t) := n^{-1}\mathbf{r}_m(\lceil mt \rceil), \qquad \bar{\mathbf{c}}_n(t) := m^{-1}\mathbf{c}_n(\lceil nt \rceil).$$

- ▶ We know $X \approx Z^{\mathbf{r}_m, \mathbf{c}_n}$ in $\|\cdot\|_{\square}$. Does the typical tables (and the MLEs) have scaling limit as $(\mathbf{r}_m, \mathbf{c}_n) \to (\mathbf{r}, \mathbf{c})$?
- A continuum margin $(\mathbf{r}, \mathbf{c}) = \text{integrable functions } \mathbf{r}, \mathbf{c} : (0, 1] \to \mathbb{R}$ such that $\int_0^1 \mathbf{r}(x) \, dx = \int_0^1 \mathbf{c}(y) \, dy$
- For a $m \times n$ discrete margin $(\mathbf{r}_m, \mathbf{c}_n)$, define the corresponding **continuum step** margin $(\bar{\mathbf{r}}_m, \bar{\mathbf{c}}_n)$ as

$$\bar{\mathbf{r}}_m(t) := n^{-1}\mathbf{r}_m(\lceil mt \rceil), \qquad \bar{\mathbf{c}}_n(t) := m^{-1}\mathbf{c}_n(\lceil nt \rceil).$$

• A seq. of $m \times n$ margins $(\mathbf{r}_m, \mathbf{c}_n)$ converges in L^1 to a continuum margin (\mathbf{r}, \mathbf{c}) if

$$\lim_{m \to \infty} \|\mathbf{r} - \overline{\mathbf{r}}_m\|_1 + \|\mathbf{c} - \overline{\mathbf{c}}_n\|_1 = 0.$$

- ▶ We know $X \approx Z^{\mathbf{r}_m, \mathbf{c}_n}$ in $\|\cdot\|_{\square}$. Does the typical tables (and the MLEs) have scaling limit as $(\mathbf{r}_m, \mathbf{c}_n) \to (\mathbf{r}, \mathbf{c})$?
- A continuum margin $(\mathbf{r}, \mathbf{c}) = \text{integrable functions } \mathbf{r}, \mathbf{c} : (0, 1] \to \mathbb{R}$ such that $\int_0^1 \mathbf{r}(x) \, dx = \int_0^1 \mathbf{c}(y) \, dy$
- For a $m \times n$ discrete margin $(\mathbf{r}_m, \mathbf{c}_n)$, define the corresponding **continuum step** margin $(\bar{\mathbf{r}}_m, \bar{\mathbf{c}}_n)$ as

$$\bar{\mathbf{r}}_m(t) := n^{-1}\mathbf{r}_m(\lceil mt \rceil), \qquad \bar{\mathbf{c}}_n(t) := m^{-1}\mathbf{c}_n(\lceil nt \rceil).$$

▶ A seq. of $m \times n$ margins $(\mathbf{r}_m, \mathbf{c}_n)$ converges in L^1 to a continuum margin (\mathbf{r}, \mathbf{c}) if

$$\lim_{m \to \infty} \|\mathbf{r} - \overline{\mathbf{r}}_m\|_1 + \|\mathbf{c} - \overline{\mathbf{c}}_n\|_1 = 0.$$

▶ (Informal result III)

For $(\mathbf{r}_m, \mathbf{c}_n) \to (\mathbf{r}, \mathbf{c})$ in L^1 and $X \sim \mu^{\otimes (m \times n)}$ conditioned on $\mathcal{T}(\mathbf{r}_m, \mathbf{c}_n)$, $W_X \to W^{\mathbf{r}, \mathbf{c}}$ a.s. in cut norm

where
$$W^{\mathsf{r,c}}(x,y) = \psi'(\alpha(x) + \beta(y))$$
 for some $\alpha, \beta \in [0,1] \to \mathbb{R}$.

Theorem (Scaling limit of typical tables and MLEs; L-M '24+)

Fix $\delta > 0$ and let $(\mathbf{r}_m, \mathbf{c}_n)$ be a sequence of $m \times n$ δ -tame margins converging to a continuum margin (\mathbf{r}, \mathbf{c}) in L^1 as $m, n \to \infty$. Then \exists bounded measurable functions $\alpha, \beta : [0,1] \to \mathbb{R}$ s.t. $\int \alpha(x) dx = 0$ and the kernel

$$W^{\mathsf{r,c}}(x,y) := \psi'(\alpha(x) + \beta(y))$$

has continuum margin (**r**, **c**). Furthermore.

$$\|W^{\mathbf{r},\mathbf{c}} - W_{\mathbf{Z}^{\mathbf{r},\mathbf{c},\mathbf{c}_n}}\|_2^2 \le C_{\delta} \|(\mathbf{r},\mathbf{c}) - (\bar{\mathbf{r}}_m,\bar{\mathbf{c}}_n)\|_1$$
$$\|\alpha - \bar{\alpha}_m\|_2^2 + \|\beta - \bar{\beta}_n\|_2^2 \le C_{\delta} \|(\mathbf{r},\mathbf{c}) - (\bar{\mathbf{r}}_m,\bar{\mathbf{c}}_n)\|_1.$$

Outline

Introductior

Random graphs with given degree sequences

A parametric approach for RMs with given margin

Contingency tables and Typical tables

A non-parametric approach to RMs with given margir

Some results on RMs with exactly given margins

Phase diagram of tame margins

Open problems

Sinkhorn algorithm

Static Shrödinger bridg

▶ Recall the transference principle for exact margin conditioning ($\rho = 0$):

$$\mathbb{P}(X \in \mathcal{E}) \leq \mathbb{P}\left(Y \in \mathcal{T}(\mathbf{r}, \mathbf{c})\right)^{-1} \mathbb{P}\left(Y \in \mathcal{E}\right), \quad Y \sim \mu_{\alpha \oplus \beta}$$

lacktriangleright Recall the transference principle for exact margin conditioning (ho=0):

$$\mathbb{P}(X \in \mathcal{E}) \leq \mathbb{P}\left(Y \in \mathcal{T}(\mathbf{r}, \mathbf{c})\right)^{-1} \mathbb{P}\left(Y \in \mathcal{E}\right), \quad Y \sim \mu_{\alpha \oplus \beta}$$

▶ The key issue is to lower bound $\mathbb{P}(Y \in \mathcal{T}(\mathbf{r}, \mathbf{c}))$

Recall the transference principle for exact margin conditioning (
ho=0):

$$\mathbb{P}(X \in \mathcal{E}) \leq \mathbb{P}\left(Y \in \mathcal{T}(\mathbf{r}, \mathbf{c})\right)^{-1} \mathbb{P}\left(Y \in \mathcal{E}\right), \quad Y \sim \boldsymbol{\mu}_{\boldsymbol{\alpha} \oplus \boldsymbol{\beta}}$$

▶ The key issue is to lower bound $\mathbb{P}(Y \in \mathcal{T}(\mathbf{r}, \mathbf{c}))$

Corollary (L-M '24+)

Let $X \sim \mu^{\otimes (m \times n)}$ cond. on $X \in \mathcal{T}(\mathbf{r}, \mathbf{c})$. Suppose (\mathbf{r}, \mathbf{c}) is a 'k-cloning' of some $m_0 \times n_0$ margin (\mathbf{a}, \mathbf{b}) with an MLE (α_0, β_0) , i.e., $\mathbf{r} = \mathbf{a} \otimes \mathbf{1}_k$ and $\mathbf{c} = \mathbf{b} \otimes \mathbf{1}_k$, where \otimes denotes the Kronecker product. Then as $k \to \infty$,

$$d_{TV}(X_{11},\mu_{\alpha_0(1)+\beta_0(1)}) = \begin{cases} O\left(k^{-1/2}\sqrt{\log k}\right) & \text{if } \mu = \operatorname{Counting}(\mathbb{Z}_{\geq 0}) \text{ or } \operatorname{Leb}(\mathbb{R}_{\geq 0}) \\ O\left(k^{-1/4}\log k\right) & \text{if } \mu = \operatorname{Wtd} \text{ versions of the above} \end{cases}$$

Recall the transference principle for exact margin conditioning (
ho=0):

$$\mathbb{P}(X \in \mathcal{E}) \leq \mathbb{P}\left(Y \in \mathcal{T}(\mathbf{r}, \mathbf{c})\right)^{-1} \mathbb{P}\left(Y \in \mathcal{E}\right), \quad Y \sim \boldsymbol{\mu}_{\boldsymbol{\alpha} \oplus \boldsymbol{\beta}}$$

▶ The key issue is to lower bound $\mathbb{P}(Y \in \mathcal{T}(\mathbf{r}, \mathbf{c}))$

Corollary (L-M '24+)

Let $X \sim \mu^{\otimes (m \times n)}$ cond. on $X \in \mathcal{T}(\mathbf{r}, \mathbf{c})$. Suppose (\mathbf{r}, \mathbf{c}) is a 'k-cloning' of some $m_0 \times n_0$ margin (\mathbf{a}, \mathbf{b}) with an MLE (α_0, β_0) , i.e., $\mathbf{r} = \mathbf{a} \otimes \mathbf{1}_k$ and $\mathbf{c} = \mathbf{b} \otimes \mathbf{1}_k$, where \otimes denotes the Kronecker product. Then as $k \to \infty$,

$$d_{TV}(X_{11},\mu_{\alpha_0(1)+\beta_0(1)}) = \begin{cases} O\left(k^{-1/2}\sqrt{\log k}\right) & \text{if } \mu = \operatorname{Counting}(\mathbb{Z}_{\geq 0}) \text{ or } \operatorname{Leb}(\mathbb{R}_{\geq 0}) \\ O\left(k^{-1/4}\log k\right) & \text{if } \mu = \operatorname{Wtd} \text{ versions of the above} \end{cases}$$

 Answers Barvinok's 2010 conjecture on marginal distribution of random contingency tables

Theorem (Scaling limit in cut norm; L-M '24+)

Let δ -tame margins $(\mathbf{r}_m, \mathbf{c}_n) \to (\mathbf{r}, \mathbf{c})$ in L^1 . Let $X \sim \mu^{\otimes (m \times n)}$ cond. on $X \in \mathcal{T}(\mathbf{r}_m, \mathbf{c}_n)$. If $d\mu = h d$ Counting(x) or h dx for "nice" h, with probability at least $1 - \exp\left(-C(m\sqrt{n} - n\sqrt{m})(\log(m+n))^2\right)$,

$$\|W_X - W^{r,c}\|_{\square} \leq C\sqrt{n^{-1/2} + m^{-1/2}}\log(m+n) + C\sqrt{\|(\mathbf{r},\mathbf{c}) - (\overline{\mathbf{r}}_m,\overline{\mathbf{c}}_n)\|_1}.$$

▶ We now know $X \approx \mathbb{E}[Y] = Z^{r,c}$. What about the fluctuation $X - Z^{r,c}$?

- We now know $X \approx \mathbb{E}[Y] = Z^{r,c}$. What about the fluctuation $X Z^{r,c}$?
- ► Since *X* is a non-symmetric rectangluar RM, we look at the empirical singular value distribution (ESD).

- We now know $X \approx \mathbb{E}[Y] = Z^{r,c}$. What about the fluctuation $X Z^{r,c}$?
- ► Since *X* is a non-symmetric rectangluar RM, we look at the empirical singular value distribution (ESD).
 - If X is unconditioned, then the ESD follows Marchenko-Pastur quarter-circle law (1967). What happends under margin-conditioning?

- ▶ We now know $X \approx \mathbb{E}[Y] = Z^{r,c}$. What about the fluctuation $X Z^{r,c}$?
- ► Since *X* is a non-symmetric rectangluar RM, we look at the empirical singular value distribution (ESD).
 - If X is unconditioned, then the ESD follows Marchenko-Pastur quarter-circle law (1967). What happends under margin-conditioning?

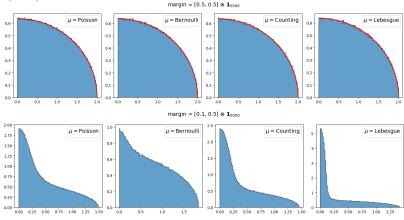


Figure: Empirical singular value distribution for $X \sim \mu^{\otimes (m \times n)}$ given $X \in \mathcal{T}(\mathbf{r}, \mathbf{c})$

Assume uniform margins ${f r}={f c}=a{f 1}_n$ for some a in the support of $\mu.$ Let

$$\widetilde{X}_n := \frac{1}{\sqrt{2\psi''(\phi(a))n}}(X - a\mathbf{1}\mathbf{1}^\top).$$

Assume uniform margins $\mathbf{r} = \mathbf{c} = a\mathbf{1}_n$ for some a in the support of μ . Let

$$\widetilde{X}_n := \frac{1}{\sqrt{2\psi''(\phi(a))n}}(X - a\mathbf{1}\mathbf{1}^\top).$$

Then the empirical singular value distribution of \tilde{X}_n converges weakly to the Marchenko-Pastur quarter-circle law $\frac{1}{\pi}\sqrt{4-x^2}$ dx in probability.

• Chaterjee, Diaconis, Sly in 2010 showed the above for $\mu = \text{Leb}(\mathbb{R}_{\geq 0})$.

Assume uniform margins $\mathbf{r} = \mathbf{c} = a\mathbf{1}_n$ for some a in the support of μ . Let

$$\widetilde{X}_n := \frac{1}{\sqrt{2\psi''(\phi(a))n}}(X - a\mathbf{1}\mathbf{1}^\top).$$

- Chaterjee, Diaconis, Sly in 2010 showed the above for $\mu = \text{Leb}(\mathbb{R}_{\geq 0})$.
- Our result confirms universality of the M-P law for constant margin-conditoined RMs.

Assume uniform margins ${f r}={f c}=a{f 1}_n$ for some a in the support of μ . Let

$$\widetilde{X}_n := \frac{1}{\sqrt{2\psi''(\phi(\mathsf{a}))n}}(X - \mathsf{a}\mathbf{1}\mathbf{1}^\top).$$

- Chaterjee, Diaconis, Sly in 2010 showed the above for $\mu = \text{Leb}(\mathbb{R}_{>0})$.
- Our result confirms universality of the M-P law for constant margin-conditoined RMs.
- We have a general result for arbitrary δ -tame marings. The limiting law is **not** always M-P; determined by the variance profile $\psi''(\alpha \oplus \beta)$ through QVE determining the Stieltjes transform.

Assume uniform margins ${f r}={f c}=a{f 1}_n$ for some a in the support of μ . Let

$$\widetilde{X}_n := \frac{1}{\sqrt{2\psi''(\phi(a))n}}(X - a\mathbf{1}\mathbf{1}^\top).$$

- Chaterjee, Diaconis, Sly in 2010 showed the above for $\mu = \text{Leb}(\mathbb{R}_{>0})$.
- Our result confirms universality of the M-P law for constant margin-conditoined RMs.
- We have a general result for arbitrary δ -tame marings. The limiting law is **not** always M-P; determined by the variance profile $\psi''(\alpha \oplus \beta)$ through QVE determining the Stieltjes transform.
- Sketch of Proof: $\mathsf{ESD}(\tilde{X}_n) \approx \mathsf{ESD}(\tilde{Y}_n)$ by transference; $\tilde{Y}_n \tilde{Y}_n^*$ generalized Wishart with variance profile $\psi''(\alpha_n \oplus \beta_n)$.

Outline

Introductior

Random graphs with given degree sequences

A parametric approach for RMs with given margir

Contingency tables and Typical tables

A non-parametric approach to RMs with given margir

Some results on RMs with exactly given margins

Phase diagram of tame margins

Open problems

Sinkhorn algorithm

Static Shrödinger bridge

Geometry of tame margins

All our results so far depends on the margin (\mathbf{r}, \mathbf{c}) being δ -tame: i.e., MLE (α, β) exists and its entries satisfy

$$A_\delta := \max\left(A + \delta, -\frac{1}{\delta}\right) \leq \psi'(\alpha \oplus \beta) \leq \min\left(B - \delta, \frac{1}{\delta}\right) =: B_\delta.$$

Geometry of tame margins

All our results so far depends on the margin (\mathbf{r}, \mathbf{c}) being δ-tame: i.e., MLE (α, β) exists and its entries satisfy

$$A_\delta := \max\left(A + \delta, -\frac{1}{\delta}\right) \leq \psi'(\boldsymbol{\alpha} \oplus \boldsymbol{\beta}) \leq \min\left(B - \delta, \frac{1}{\delta}\right) =: B_\delta.$$

► Tameness is an implicit condition. Seek for explicit conditions only using extreme values in the margin.

Geometry of tame margins

All our results so far depends on the margin (\mathbf{r}, \mathbf{c}) being δ -tame: i.e., MLE (α, β) exists and its entries satisfy

$$A_\delta := \max\left(A + \delta, -\frac{1}{\delta}\right) \leq \psi'(\boldsymbol{\alpha} \oplus \boldsymbol{\beta}) \leq \min\left(B - \delta, \frac{1}{\delta}\right) =: B_\delta.$$

- Tameness is an implicit condition. Seek for explicit conditions only using extreme values in the margin.
- ► For each point $(s, t) \in (A, B)^2$, $s \le t$, we ask if an arbitrary $m \times n$ margin (\mathbf{r}, \mathbf{c}) satisfying

$$s \le \mathbf{r}(i)/n, \mathbf{c}(j)/m \le t$$
 for all $(i,j) \in [m] \times [n]$

is δ -tame for some $\delta = \delta(\mu, s, t) > 0$ depending only on μ , s, and t.

All our results so far depends on the margin (\mathbf{r}, \mathbf{c}) being δ -tame: i.e., MLE (α, β) exists and its entries satisfy

$$A_\delta := \max\left(A + \delta, -\frac{1}{\delta}\right) \leq \psi'(\alpha \oplus \beta) \leq \min\left(B - \delta, \frac{1}{\delta}\right) =: B_\delta.$$

- Tameness is an implicit condition. Seek for explicit conditions only using extreme values in the margin.
- ► For each point $(s, t) \in (A, B)^2$, $s \le t$, we ask if an arbitrary $m \times n$ margin (\mathbf{r}, \mathbf{c}) satisfying

$$s \le \mathbf{r}(i)/n, \mathbf{c}(j)/m \le t$$
 for all $(i,j) \in [m] \times [n]$

is δ -tame for some $\delta = \delta(\mu, s, t) > 0$ depending only on μ , s, and t.

Let $\Omega(\mu) \subseteq (A, B)^2$ denote the set of all such points (s, t).

All our results so far depends on the margin (\mathbf{r}, \mathbf{c}) being δ -tame: i.e., MLE (α, β) exists and its entries satisfy

$$A_\delta := \max\left(A + \delta, -\frac{1}{\delta}\right) \leq \psi'(\boldsymbol{\alpha} \oplus \boldsymbol{\beta}) \leq \min\left(B - \delta, \frac{1}{\delta}\right) =: B_\delta.$$

- Tameness is an implicit condition. Seek for explicit conditions only using extreme values in the margin.
- ► For each point $(s, t) \in (A, B)^2$, $s \le t$, we ask if an arbitrary $m \times n$ margin (\mathbf{r}, \mathbf{c}) satisfying

$$s \le \mathbf{r}(i)/n, \mathbf{c}(j)/m \le t$$
 for all $(i, j) \in [m] \times [n]$

is δ -tame for some $\delta = \delta(\mu, s, t) > 0$ depending only on μ , s, and t.

- Let $\Omega(\mu) \subseteq (A, B)^2$ denote the set of all such points (s, t).
- Can we obtain the full phase diagram $\Omega(\mu)$ for each base measure μ ?

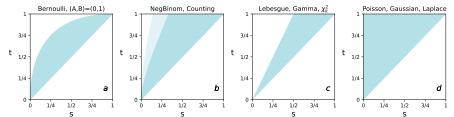


Figure: Phase diagrams for tame margins for various base measures μ . The upper contours are given by $(s+t)^2 < 2s$, $t \le 1 + \sqrt{1+rs^{-1}}$ (r=5) for NegBinom and r=1 for Counting), $t \le s/2$, and $t=\infty$ from left to right.

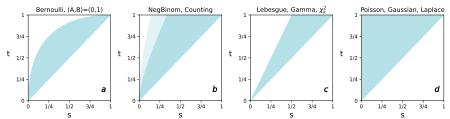


Figure: Phase diagrams for tame margins for various base measures μ . The upper contours are given by $(s+t)^2 < 2s$, $t \le 1 + \sqrt{1+rs^{-1}}$ (r=5) for NegBinom and r=1 for Counting), t < s/2, and $t = \infty$ from left to right.

Theorem (L-M '24+)

Suppose
$$-\infty < A \le B < \infty$$
. Then each $(s,t) \in (A,B)^2$ with $s \le t$ belongs to $\Omega(\mu)$ if $(s+t-2A)^2 < 4(B-A)(s-A)$.

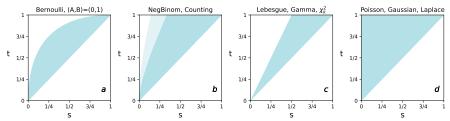


Figure: Phase diagrams for tame margins for various base measures μ . The upper contours are given by $(s+t)^2 < 2s$, $t \le 1 + \sqrt{1+rs^{-1}}$ (r=5) for NegBinom and r=1 for Counting), $t \le s/2$, and $t=\infty$ from left to right.

Theorem (L-M '24+)

Suppose
$$-\infty < A \le B < \infty$$
. Then each $(s,t) \in (A,B)^2$ with $s \le t$ belongs to $\Omega(\mu)$ if $(s+t-2A)^2 < 4(B-A)(s-A)$.

A Matrix version of Erdős-Galai condition

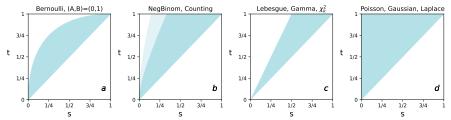


Figure: Phase diagrams for tame margins for various base measures μ . The upper contours are given by $(s+t)^2 < 2s$, $t \le 1 + \sqrt{1+rs^{-1}}$ (r=5) for NegBinom and r=1 for Counting), $t \le s/2$, and $t=\infty$ from left to right.

Theorem (L-M '24+)

Suppose
$$-\infty < A \le B < \infty$$
. Then each $(s,t) \in (A,B)^2$ with $s \le t$ belongs to $\Omega(\mu)$ if $(s+t-2A)^2 < 4(B-A)(s-A)$.

- A Matrix version of Erdös-Galai condition
- Universality: only depends on B − A

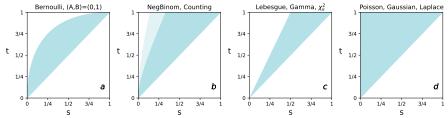


Figure: Phase diagrams for tame margins for various base measures μ . The upper contours are given by $(s+t)^2 < 2s$, $t \le 1 + \sqrt{1+rs^{-1}}$ (r=5) for NegBinom and r=1 for Counting), $t \le s/2$, and $t=\infty$ from left to right.

Theorem (L-M '24+)

$$(s,t) \in \Omega(\delta)$$
 if and only if $t/s < \lambda_c$ where

$$\lambda_c := \begin{cases} 1 + \sqrt{1 + \mathit{rs}^{-1}} & \text{if } \mu = \mathit{r}\text{-fold convolution of the counting measure on } \mathbb{Z}_{\geq 0}, \\ 2 & \text{if } \mu = \mathsf{Gamma, Lebesgue}(\mathbb{R}_{\geq 0}), \text{ or } \chi^2_k \\ \infty & \text{if } \mu = \mathsf{Poisson, Gaussian, Laplace} \end{cases}$$

Outline

Introductior

Random graphs with given degree sequences

A parametric approach for RMs with given margir

Contingency tables and Typical tables

A non-parametric approach to RMs with given margir

Some results on RMs with exactly given margins

Phase diagram of tame margins

Open problems

Sinkhorn algorithm

Static Shrödinger bridge

► (Summary)

- $X_{11} \stackrel{d}{=} \mu_{\alpha(1)+\beta(1)}$
- $\mathbb{E}[X] \approx Z^{r,c} = \psi'(\alpha \oplus \beta) = \mathbb{E}[Y]$
- $X \mathbb{E}[Y] = \text{ small w.h.p. in cut norm}$
- $X \stackrel{d}{\approx} Y \sim \mu_{\alpha \oplus \beta}$

► (Summary)

- $X_{11} \stackrel{d}{=} \mu_{\alpha(1)+\beta(1)}$
- $\mathbb{E}[X] \approx Z^{r,c} = \psi'(\alpha \oplus \beta) = \mathbb{E}[Y]$
- $X \mathbb{E}[Y] = \text{small w.h.p. in cut norm}$
- $X \stackrel{d}{\approx} Y \sim \mu_{\alpha \oplus \beta}$
- ► Empirical distribution of eigenvalues of $X \mathbb{E}[Y]$? (circular for constant margin with $\mu = \text{Leb}(\mathbb{R}_{>0})$ by Nguyen '14 [16])

► (Summary)

- $X_{11} \stackrel{d}{=} \mu_{\alpha(1)+\beta(1)}$
- $\mathbb{E}[X] \approx Z^{r,c} = \psi'(\alpha \oplus \beta) = \mathbb{E}[Y]$
- $X \mathbb{E}[Y] = \text{small w.h.p. in cut norm}$
- $X \stackrel{d}{\approx} Y \sim \mu_{\alpha \oplus \beta}$
- ► Empirical distribution of eigenvalues of $X \mathbb{E}[Y]$? (circular for constant margin with $\mu = \text{Leb}(\mathbb{R}_{>0})$ by Nguyen '14 [16])
- ▶ Eigenvalue distribution with additional symmetry $X^{\top} = X$? (Semi-circle for constant margin, generalized Wigner matrices, quadratic vector eq. etc.; Discussing with Hongchang Ji)

► (Summary)

- $X_{11} \stackrel{d}{=} \mu_{\alpha(1)+\beta(1)}$
- $\mathbb{E}[X] \approx Z^{r,c} = \psi'(\alpha \oplus \beta) = \mathbb{E}[Y]$
- $X \mathbb{E}[Y] = \text{small w.h.p. in cut norm}$
- $X \stackrel{d}{\approx} Y \sim \mu_{\alpha \oplus \beta}$
- ► Empirical distribution of eigenvalues of $X \mathbb{E}[Y]$? (circular for constant margin with $\mu = \text{Leb}(\mathbb{R}_{>0})$ by Nguyen '14 [16])
- Eigenvalue distribution with additional symmetry $X^{\top} = X$? (Semi-circle for constant margin, generalized Wigner matrices, quadratic vector eq. etc.; Discussing with Hongchang Ji)
- Extend the theory for more general base measure for RM ensemble than i.i.d.? (with $\mu = \text{Poisson}(1)$, connection to entropic optimal transport; Ongoing work with William Powell)

(Summary)

- $X_{11} \stackrel{d}{=} \mu_{\alpha(1)+\beta(1)}$
- $\mathbb{E}[X] \approx Z^{r,c} = \psi'(\alpha \oplus \beta) = \mathbb{E}[Y]$
- $X \mathbb{E}[Y] = \text{small w.h.p.}$ in cut norm
- $X \stackrel{d}{\approx} Y \sim \mu_{\alpha \oplus \beta}$
- ► Empirical distribution of eigenvalues of $X \mathbb{E}[Y]$? (circular for constant margin with $\mu = \text{Leb}(\mathbb{R}_{>0})$ by Nguyen '14 [16])
- Eigenvalue distribution with additional symmetry $X^{\top} = X$? (Semi-circle for constant margin, generalized Wigner matrices, quadratic vector eq. etc.; Discussing with Hongchang Ji)
- Extend the theory for more general base measure for RM ensemble than i.i.d.? (with $\mu = \text{Poisson}(1)$, connection to entropic optimal transport; Ongoing work with William Powell)
- ▶ DLP? (For random graphs with given degree sequence, LDP is done by Dhara and Sen '22 [6])
 - Ongoing work with Sumit Mukherjee

Thank you very much!

- [1] Alexander Barvinok. "Asymptotic estimates for the number of contingency tables, integer flows, and volumes of transportation polytopes". In: *International Mathematics Research Notices* 2009.2 (2009), pp. 348–385.
- [2] Alexander Barvinok. "What does a random contingency table look like?" In: Combinatorics, Probability and Computing 19.4 (2010), pp. 517–539.
- [3] Petter Brändén, Jonathan Leake, and Igor Pak. "Lower bounds for contingency tables via Lorentzian polynomials". In: *Israel Journal of Mathematics* 253.1 (2023), pp. 43–90.
- [4] E Rodney Canfield and Brendan D McKay. "Asymptotic enumeration of integer matrices with large equal row and column sums". In: *Combinatorica* 30.6 (2010), p. 655.
- [5] Sourav Chatterjee, Persi Diaconis, and Allan Sly. "Random graphs with a given degree sequence". In: *The Annals of Applied Probability* 21.4 (2011), pp. 1400–1435.
- [6] Souvik Dhara and Subhabrata Sen. "Large deviation for uniform graphs with given degrees". In: *Ann. Appl. Probab.* 32.3 (2022), pp. 2327–53.

- [7] Persi Diaconis and Anil Gangolli. "Rectangular arrays with fixed margins". In: Discrete probability and algorithms. Springer, 1995, pp. 15–41.
- [8] Samuel Dittmer, Hanbaek Lyu, and Igor Pak. "Phase transition in random contingency tables with non-uniform margins". In: *Transactions of the American Mathematical Society* 373.12 (2020), pp. 8313–8338.
- [9] Robert Fortet. "Résolution d'un système d'équations de M. Schrödinger". In: Journal de Mathématiques Pures et Appliquées 19.1-4 (1940), pp. 83–105.
- [10] IJ Good and JF Crook. "The enumeration of arrays and a generalization related to contingency tables". In: *Discrete Mathematics* 19.1 (1977), pp. 23–45.
- [11] Irving J Good. "Maximum entropy for hypothesis formulation, especially for multidimensional contingency tables". In: *The Annals of Mathematical Statistics* 34.3 (1963), pp. 911–934.
- [12] Irving J Good. "On the application of symmetric Dirichlet distributions and their mixtures to contingency tables". In: *The Annals of Statistics* 4.6 (1976), pp. 1159–1189.
- [13] Isidore Jacob Good. *Probability and the Weighing of Evidence*. C. Griffin London, 1950.

- [14] Catherine Greenhill and Brendan D McKay. "Asymptotic enumeration of sparse nonnegative integer matrices with specified row and column sums". In: *Advances in Applied Mathematics* 41.4 (2008), pp. 459–481.
- [15] Hanbaek Lyu and Igor Pak. "On the number of contingency tables and the independence heuristic". In: *Bulletin of the London Mathematical Society* 54.1 (2022), pp. 242–255.
- [16] Hoi H Nguyen. "Random doubly stochastic matrices: the circular law". In: (2014).
- [17] Michele Pavon, Giulio Trigila, and Esteban G Tabak. "The Data-Driven Schrödinger Bridge". In: *Communications on Pure and Applied Mathematics* 74.7 (2021), pp. 1545–1573.
- [18] Cédric Villani. *Topics in optimal transportation*. Vol. 58. American Mathematical Soc., 2021.

Outline

Introductior

Random graphs with given degree sequences

A parametric approach for RMs with given margin

Contingency tables and Typical tables

A non-parametric approach to RMs with given margir

Some results on RMs with exactly given margins

Phase diagram of tame margins

Open problems

Sinkhorn algorithm

Static Shrödinger bridge

How do we compute the typical table?

► Solve the dual (MLE) problem:

- ▶ Solve the dual (MLE) problem:
 - $\arg\max_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left(\mathsf{g}^{\mathsf{r},\mathsf{c}}(\boldsymbol{\alpha},\boldsymbol{\beta}) := \langle \mathsf{r},\boldsymbol{\alpha}\rangle + \langle \mathsf{c},\boldsymbol{\beta}\rangle \sum_{i,j} \psi(\boldsymbol{\alpha}(i) + \boldsymbol{\beta}(j)) \right)$

How do we compute the typical table?

Solve the dual (MLE) problem:

$$\mathop{\mathsf{arg\,max}}_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left(g^{\mathsf{r},\mathsf{c}}(\boldsymbol{\alpha},\boldsymbol{\beta}) := \langle \mathsf{r},\boldsymbol{\alpha} \rangle + \langle \mathsf{c},\boldsymbol{\beta} \rangle - \sum_{i,j} \psi(\boldsymbol{\alpha}(i) + \boldsymbol{\beta}(j)) \right)$$

- Strictly concave maximization in two variables $oldsymbol{lpha},oldsymbol{eta}$
 - → Alternating Maximization! (a.k.a. Nonlinear Gauss-Seidel or BCD)

$$\begin{cases} \alpha_k \leftarrow \operatorname{arg\,max}_{\alpha \in \mathbb{R}^m} \, g^{\mathsf{r,c}}(\alpha,\beta_{k-1}) \\ \beta_k \leftarrow \operatorname{arg\,max}_{\beta \in \mathbb{R}^n} \, g^{\mathsf{r,c}}(\alpha_k,\beta). \end{cases}$$

- Solve the dual (MLE) problem:
 - $\operatorname*{\mathsf{arg\,max}}_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left(\mathsf{g}^{\mathsf{r,c}}(\boldsymbol{\alpha},\boldsymbol{\beta}) := \langle \mathsf{r},\boldsymbol{\alpha} \rangle + \langle \mathsf{c},\boldsymbol{\beta} \rangle \sum_{i,j} \psi(\boldsymbol{\alpha}(\mathit{i}) + \boldsymbol{\beta}(\mathit{j})) \right)$
 - Strictly concave maximization in two variables lpha,eta
 - → Alternating Maximization! (a.k.a. Nonlinear Gauss-Seidel or BCD)

$$\begin{cases} \alpha_{\textit{k}} \leftarrow \mathop{\mathsf{arg}} \max_{\alpha \in \mathbb{R}^{m}} \, g^{\mathsf{r,c}}(\alpha,\beta_{\textit{k}-1}) \\ \beta_{\textit{k}} \leftarrow \mathop{\mathsf{arg}} \max_{\beta \in \mathbb{R}^{n}} \, g^{\mathsf{r,c}}(\alpha_{\textit{k}},\beta). \end{cases}$$

· Finding critical points for the marginal problems, it reduces to

$$\begin{cases} \text{For } 1 \leq i \leq \textit{m}, \ \alpha_k(i) \leftarrow \text{unique } \alpha \text{ s.t. } \mathbf{r}(i) = \sum_{j=1}^n \psi'(\alpha + \beta_{k-1}(j)), \\ \text{For } 1 \leq j \leq \textit{n}, \ \beta_k(j) \leftarrow \text{unique } \beta \text{ s.t. } \mathbf{c}(j) = \sum_{i=1}^m \psi'(\alpha_k(i) + \beta). \end{cases}$$

Solve the dual (MLE) problem:

$$lpha_{m{lpha},m{eta}} \left(g^{m{r},m{c}}(m{lpha},m{eta}) := \langle m{r},m{lpha}
angle + \langle m{c},m{eta}
angle - \sum_{i,j} \psi(m{lpha}(i) + m{eta}(j))
ight)$$

- Strictly concave maximization in two variables lpha,eta
 - → Alternating Maximization! (a.k.a. Nonlinear Gauss-Seidel or BCD)

$$\begin{cases} \alpha_k \leftarrow \text{arg max}_{\alpha \in \mathbb{R}^m} \ g^{\mathsf{r,c}}(\alpha,\beta_{k-1}) \\ \beta_k \leftarrow \text{arg max}_{\beta \in \mathbb{R}^n} \ g^{\mathsf{r,c}}(\alpha_k,\beta). \end{cases}$$

· Finding critical points for the marginal problems, it reduces to

$$\begin{cases} \text{For } 1 \leq i \leq \textit{m}, \ \alpha_k(i) \leftarrow \text{unique } \alpha \text{ s.t. } \mathbf{r}(i) = \sum_{j=1}^n \psi'(\alpha + \beta_{k-1}(j)), \\ \text{For } 1 \leq j \leq \textit{n}, \ \beta_k(j) \leftarrow \text{unique } \beta \text{ s.t. } \mathbf{c}(j) = \sum_{j=1}^m \psi'(\alpha_k(i) + \beta). \end{cases}$$

• For $\mu = \text{Poisson}(1)$ (Schrödinger bridge), $\psi'(x) = e^x$, so

$$\begin{cases} \text{For } 1 \leq i \leq m, \ \alpha_k(i) \leftarrow \log \left(\mathbf{r}(i)\right) - \log \left(\sum_{j=1}^n \exp(\beta_{k-1}(j))\right), \\ \text{For } 1 \leq i \leq n, \ \beta_k(j) \leftarrow \log \left(\mathbf{c}(j)\right) - \log \left(\sum_{i=1}^m \exp(\alpha_k(i))\right). \end{cases}$$

Solve the dual (MLE) problem:

$$\operatorname*{arg\,max}_{\boldsymbol{\alpha},\boldsymbol{\beta}}\left(g^{\mathsf{r,c}}(\boldsymbol{\alpha},\boldsymbol{\beta}):=\langle \mathsf{r},\boldsymbol{\alpha}\rangle+\langle \mathsf{c},\boldsymbol{\beta}\rangle-\sum_{i,j}\psi(\boldsymbol{\alpha}(\textit{i})+\boldsymbol{\beta}(\textit{j}))\right)$$

- Strictly concave maximization in two variables $lpha,oldsymbol{eta}$
 - → Alternating Maximization! (a.k.a. Nonlinear Gauss-Seidel or BCD)

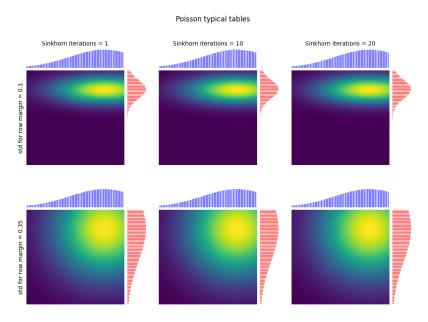
$$\begin{cases} \alpha_k \leftarrow \text{arg max}_{\alpha \in \mathbb{R}^m} \ g^{\mathsf{r,c}}(\alpha,\beta_{k-1}) \\ \beta_k \leftarrow \text{arg max}_{\beta \in \mathbb{R}^n} \ g^{\mathsf{r,c}}(\alpha_k,\beta). \end{cases}$$

· Finding critical points for the marginal problems, it reduces to

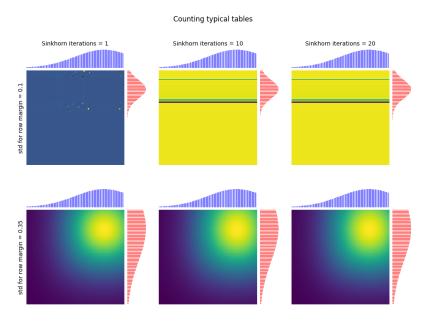
$$\begin{cases} \text{For } 1 \leq i \leq \textit{m}, \ \alpha_k(i) \leftarrow \text{unique } \alpha \text{ s.t. } \mathbf{r}(i) = \sum_{j=1}^n \psi'(\alpha + \beta_{k-1}(j)), \\ \text{For } 1 \leq j \leq \textit{n}, \ \beta_k(j) \leftarrow \text{unique } \beta \text{ s.t. } \mathbf{c}(j) = \sum_{j=1}^m \psi'(\alpha_k(i) + \beta). \end{cases}$$

• For $\mu = \text{Poisson}(1)$ (Schrödinger bridge), $\psi'(x) = e^x$, so

$$\begin{cases} \text{For } 1 \leq i \leq m, \ \alpha_k(i) \leftarrow \log\left(\mathbf{r}(i)\right) - \log\left(\sum_{j=1}^n \exp(\beta_{k-1}(j))\right), \\ \text{For } 1 \leq i \leq n, \ \beta_k(j) \leftarrow \log\left(\mathbf{c}(j)\right) - \log\left(\sum_{i=1}^m \exp(\alpha_k(i))\right). \end{cases}$$



Poisson and Counting Typical Tables



$$\frac{\sigma_{-}(\varepsilon)^2}{2}\|(\boldsymbol{\alpha}^*\oplus\boldsymbol{\beta}^*)-(\boldsymbol{\alpha}_k\oplus\boldsymbol{\beta}_k)\|_F^2\leq \Delta_k\leq \left(1-\frac{\sigma_{-}(\varepsilon)^4}{\sigma_{+}(\varepsilon)^4}\right)^{k-1}\Delta_1\quad\text{for all }k\geq 1.$$

Fix μ arbitrary. Let $(\alpha_k, \beta_k) =$ generalied Sinkhorn iterates. Fix an MLE (α^*, β^*) for δ -tame (\mathbf{r}, \mathbf{c}) and denote $\Delta_k := \mathbf{g}^{\mathbf{r}, \mathbf{c}}(\alpha^*, \beta^*) - \mathbf{g}^{\mathbf{r}, \mathbf{c}}(\alpha_k, \beta_k)$. Suppose ψ'' is monotonic and $\alpha_0 = \mathbf{0}$ or μ admits arbitrary tilting $(\Theta = \mathbb{R})$. Then

$$\frac{\sigma_{-}(\varepsilon)^2}{2}\|(\boldsymbol{\alpha}^*\oplus\boldsymbol{\beta}^*)-(\boldsymbol{\alpha}_k\oplus\boldsymbol{\beta}_k)\|_F^2\leq\,\Delta_k\,\leq\,\left(1-\frac{\sigma_{-}(\varepsilon)^4}{\sigma_{+}(\varepsilon)^4}\right)^{k-1}\Delta_1\quad\text{for all }k\geq1.$$

► Key Challenges:

$$\frac{\sigma_{-}(\varepsilon)^2}{2}\|(\boldsymbol{\alpha}^*\oplus\boldsymbol{\beta}^*)-(\boldsymbol{\alpha}_k\oplus\boldsymbol{\beta}_k)\|_F^2\leq\,\Delta_k\,\leq\,\left(1-\frac{\sigma_{-}(\varepsilon)^4}{\sigma_{+}(\varepsilon)^4}\right)^{k-1}\Delta_1\quad\text{for all }k\geq1.$$

- Key Challenges:
 - The set of MLEs is unbounded: (α^*, β^*) MLE \iff $(\alpha^* + \lambda, \beta^* \lambda)$ MLE $\forall \lambda \in \mathbb{R}$

$$\frac{\sigma_{-}(\varepsilon)^2}{2}\|(\boldsymbol{\alpha}^*\oplus\boldsymbol{\beta}^*)-(\boldsymbol{\alpha}_k\oplus\boldsymbol{\beta}_k)\|_F^2\leq \Delta_k\leq \left(1-\frac{\sigma_{-}(\varepsilon)^4}{\sigma_{+}(\varepsilon)^4}\right)^{k-1}\Delta_1\quad\text{for all }k\geq 1.$$

- ► Key Challenges:
 - The set of MLEs is unbounded: (α^*, β^*) MLE \iff $(\alpha^* + \lambda, \beta^* \lambda)$ MLE $\forall \lambda \in \mathbb{R}$
 - Need a priori bound on the Sinkhorn iterates

$$\frac{\sigma_{-}(\varepsilon)^2}{2}\|(\boldsymbol{\alpha}^*\oplus\boldsymbol{\beta}^*)-(\boldsymbol{\alpha}_k\oplus\boldsymbol{\beta}_k)\|_F^2\leq\,\Delta_k\,\leq\,\left(1-\frac{\sigma_{-}(\varepsilon)^4}{\sigma_{+}(\varepsilon)^4}\right)^{k-1}\Delta_1\quad\text{for all }k\geq1.$$

- Key Challenges:
 - The set of MLEs is unbounded: (α^*, β^*) MLE \iff $(\alpha^* + \lambda, \beta^* \lambda)$ MLE $\forall \lambda \in \mathbb{R}$
 - Need a priori bound on the Sinkhorn iterates
 - \Leftarrow For Schrödinger bridge ($\mu = \mathsf{Poisson}(1)$), use exact form of Sinkhorn updates

$$\frac{\sigma_{-}(\varepsilon)^2}{2}\|(\boldsymbol{\alpha}^*\oplus\boldsymbol{\beta}^*)-(\boldsymbol{\alpha}_k\oplus\boldsymbol{\beta}_k)\|_F^2\leq \Delta_k\leq \left(1-\frac{\sigma_{-}(\varepsilon)^4}{\sigma_{+}(\varepsilon)^4}\right)^{k-1}\Delta_1\quad\text{for all }k\geq 1.$$

- ► Key Challenges:
 - The set of MLEs is unbounded: (α^*, β^*) MLE \iff $(\alpha^* + \lambda, \beta^* \lambda)$ MLE $\forall \lambda \in \mathbb{R}$
 - Need a priori bound on the Sinkhorn iterates
 - \Leftarrow For Schrödinger bridge ($\mu = Poisson(1)$), use exact form of Sinkhorn updates For general μ , no exact form of Sinkhorn updates (implicit)

$$\frac{\sigma_{-}(\varepsilon)^2}{2}\|(\boldsymbol{\alpha}^*\oplus\boldsymbol{\beta}^*)-(\boldsymbol{\alpha}_k\oplus\boldsymbol{\beta}_k)\|_F^2\leq\,\Delta_k\,\leq\,\left(1-\frac{\sigma_{-}(\varepsilon)^4}{\sigma_{+}(\varepsilon)^4}\right)^{k-1}\Delta_1\quad\text{for all }k\geq1.$$

- Key Challenges:
 - The set of MLEs is unbounded: (α^*, β^*) MLE \iff $(\alpha^* + \lambda, \beta^* \lambda)$ MLE $\forall \lambda \in \mathbb{R}$
 - Need a priori bound on the Sinkhorn iterates
 ← For Schrödinger bridge (μ = Poisson(1)), use exact form of Sinkhorn updates
 For general μ, no exact form of Sinkhorn updates (implicit)
- lacktriangle Solution: We show the ℓ^∞ -distance between the iterates and the set of MLEs does not expand

Outline

Introductior

Random graphs with given degree sequences

A parametric approach for RMs with given margir

Contingency tables and Typical tables

A non-parametric approach to RMs with given margir

Some results on RMs with exactly given margins

Phase diagram of tame margins

Open problems

Sinkhorn algorithm

Static Shrödinger bridge

• Given a base probability measure $\mathcal R$ on $\mathbb R^2$ and marginal distributions μ_1 and μ_2 ,

(**)
$$\min_{\mathcal{H} \in \Pi(\mu_1, \mu_2)} D_{\mathsf{KL}}(\mathcal{H} \parallel \mathcal{R})$$

The optimal \mathcal{H} from above is the **static Schrödinger bridge** between μ_1 and μ_2 w.r.t. \mathcal{R} [9, 17]

▶ Given a base probability measure \mathcal{R} on \mathbb{R}^2 and marginal distributions μ_1 and μ_2 ,

(**)
$$\min_{\mathcal{H} \in \Pi(\mu_1, \mu_2)} D_{\mathsf{KL}}(\mathcal{H} \parallel \mathcal{R})$$

The optimal \mathcal{H} from above is the **static Schrödinger bridge** between μ_1 and μ_2 w.r.t. \mathcal{R} [9, 17]

▶ $\exists \alpha_1, \alpha_2 : \mathbb{R} \to \mathbb{R}$, the **Schrödinger potentials** [18] s.t.

$$\frac{d\mathcal{H}}{d\mathcal{R}}(x,y) = e^{\alpha_1(x) + \alpha_2(y)}$$
 \mathcal{R} -a.s.

▶ Given a base probability measure \mathcal{R} on \mathbb{R}^2 and marginal distributions μ_1 and μ_2 ,

$$\min_{\mathcal{H} \in \Pi(\mu_1, \mu_2)} D_{\mathit{KL}}(\mathcal{H} \parallel \mathcal{R})$$

The optimal \mathcal{H} from above is the **static Schrödinger bridge** between μ_1 and μ_2 w.r.t. \mathcal{R} [9, 17]

▶ $\exists \alpha_1, \alpha_2 : \mathbb{R} \to \mathbb{R}$, the Schrödinger potentials [18] s.t.

$$\frac{d\mathcal{H}}{d\mathcal{R}}(x,y) = e^{\alpha_1(x) + \alpha_2(y)}$$
 \mathcal{R} -a.s.

▶ Specializing $\mathcal{R} \propto e^{-\gamma/\varepsilon} \mu_1 \otimes \mu_2$, (**) becomes **Entropic Optimal Transport**:

$$\min_{\mathcal{H} \in \Pi(\mu_1, \mu_2)} \, \int_{\mathbb{R}^2} \gamma(\textbf{x}, \textbf{y}) \, \mathcal{H}(\textbf{d}\textbf{x}, \textbf{d}\textbf{y}) + \varepsilon D_{\text{KL}}(\mathcal{H} \, \| \, \mu_1 \otimes \mu_2),$$

▶ Given a base probability measure \mathcal{R} on \mathbb{R}^2 and marginal distributions μ_1 and μ_2 ,

$$\min_{\mathcal{H} \in \Pi(\mu_1, \mu_2)} D_{\mathit{KL}}(\mathcal{H} \parallel \mathcal{R})$$

The optimal \mathcal{H} from above is the **static Schrödinger bridge** between μ_1 and μ_2 w.r.t. \mathcal{R} [9, 17]

▶ $\exists \alpha_1, \alpha_2 : \mathbb{R} \to \mathbb{R}$, the Schrödinger potentials [18] s.t.

$$rac{d\mathcal{H}}{d\mathcal{R}}(x,y)=e^{lpha_1(x)+lpha_2(y)}$$
 \mathcal{R} -a.s.

▶ Specializing $\mathcal{R} \propto e^{-\gamma/\epsilon} \mu_1 \otimes \mu_2$, (**) becomes **Entropic Optimal Transport**:

$$\min_{\mathcal{H} \in \Pi(\mu_1, \mu_2)} \, \int_{\mathbb{R}^2} \gamma(\mathbf{x}, \mathbf{y}) \, \mathcal{H}(\mathbf{d}\mathbf{x}, \mathbf{d}\mathbf{y}) + \varepsilon D_{\mathsf{KL}}(\mathcal{H} \, \| \, \mu_1 \otimes \mu_2),$$

▶ Specializing $\mathcal{R} = \mathsf{Uniform}([m] \times [n])$, (**) becomes

$$\min_{X=(x_{ij})\in(0,\infty)^{m\times n}}x_{ij}\log x_{ij} \quad \text{ subject to } \quad \sum_{i=1}^n x_{ij}=\mu_1(i), \quad \sum_{i=1}^m x_{ij}=\mu_2(j) \ \forall i,j.$$

▶ Given a base probability measure \mathcal{R} on \mathbb{R}^2 and marginal distributions μ_1 and μ_2 ,

$$\min_{\mathcal{H} \in \Pi(\mu_1, \mu_2)} D_{\mathit{KL}}(\mathcal{H} \parallel \mathcal{R})$$

The optimal \mathcal{H} from above is the **static Schrödinger bridge** between μ_1 and μ_2 w.r.t. \mathcal{R} [9, 17]

 $ightharpoonup \exists lpha_1, lpha_2 : \mathbb{R} o \mathbb{R}$, the **Schrödinger potentials** [18] s.t.

$$rac{d\mathcal{H}}{d\mathcal{R}}(x,y)=\mathrm{e}^{lpha_1(x)+lpha_2(y)}$$
 \mathcal{R} -a.s.

▶ Specializing $\mathcal{R} \propto e^{-\gamma/\varepsilon} \mu_1 \otimes \mu_2$, (**) becomes **Entropic Optimal Transport**:

$$\min_{\mathcal{H} \in \Pi(\mu_1, \mu_2)} \int_{\mathbb{R}^2} \gamma(x, y) \, \mathcal{H}(dx, dy) + \varepsilon D_{KL}(\mathcal{H} \parallel \mu_1 \otimes \mu_2),$$

▶ Specializing $\mathcal{R} = \mathsf{Uniform}([m] \times [n])$, (**) becomes

$$\min_{X=(x_{ij})\in(0,\infty)^{m\times n}}x_{ij}\log x_{ij} \quad \text{ subject to } \quad \sum_{i=1}^n x_{ij}=\mu_1(i), \quad \sum_{i=1}^m x_{ij}=\mu_2(j) \ \forall i,j.$$

This is in fact the **typical table** problem with $\mu = Poisson(1)!$

•
$$x_{ij} \log x_{ij} = D(\mu_{\phi(x_{ij})} || \mu) + x_{ij} - 1$$